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Abstract 

The influence of encoding and decoding speech on automatic 
speech recognition is investigated in this paper with respect to 
applications in today’ s telecommunication networks. The 
deterioration of recognition performance is presented for 
several coding schemes in GSM and future mobile networks. 
The extraction of acoustic features for the recognition is done 
with the already standardized ETSI frontend and with the 
advanced robust frontend whose standardization is almost 
finished. The Aurora2 experiment for recognizing the noisy 
TIDigits is taken as experimental basis. Finally recognition 
results are compared to results of subjective listening tests that 
have been performed for the characterisation of these speech 
coding schemes. 
 
 

1. INTRODUCTION 

Applying speech services based on automatic speech 
recognition in today’ s telecommunication networks has to take 
into consideration the influence of a big variety of different 
speech en(de)coding techniques. Several coding schemes are 
especially applied in mobile communication for transmitting 
speech over the bandlimited cellular channel. 
 
Investigations have been carried out to determine the influence 
of speech coding on the performance of speech recognition 
systems [1,2] and to improve recognition performance in such 
situations [3,4,5]. Most of this work has a focus on the GSM 
full-rate coding scheme that was introduced as first coding 
technique in GSM mobile networks. In the meantime several 
other coding schemes are or will soon get available in GSM 
networks and in mobile networks of the next generation. With 
the introduction of the AMR (Adaptive Multi-Rate) coding 
technique a complete set of 8 schemes will be introduced with 
data rates between 4.75 kBit/s and 12.2 kBit/s. The influence of 
the different coding techniques is presented in this paper 
without considering the additional influence of transmitting the 
coded speech over an erroneous cellular channel. The speech 
recognition is based on two techniques for extracting the 
acoustic features. The first approach has already been  
standardized by ETSI [6]. The second scheme will be adopted 
as another ETSI standard in the near future [7]. The  recognition 
is based on HMMs by using the training and recognition 
modules of the HTK toolkit [8]. Results are presented for the 

task of recognizing noisy digits. The recognition scheme as well 
as the database have been created in the Aurora group [9]. 
 

The influence is shown when training the recognition 
system on data processed with one of the speech coding 
schemes and recognizing data en(de)coded with a different 
technique. 

2. EXPERIMENTAL SETUP 

Figure 1 gives an overview about the whole experimental setup. 
Different speech coding schemes are investigated as used in 
fixed telecommunication networks and in the GSM as well as in 
future mobile networks. All techniques are listed in table 1 
together with their data rates and abbreviations as used 
throughout this paper. 
 

Coding scheme Data rate/ 

kBit/s 

Abbreviation 

No coding  PCM 

G.711 (alaw) 64 ALAW 

GSM full-rate 13 FR 

GSM half-rate 5.6 HR 

GSM enhanced full-rate 13 EFR 

4.75 AMR475 

5.15 AMR515 

5.9 AMR59 

6.7 AMR67 

7.4 AMR74 

7.95 AMR795 

10.2 AMR102 

 

 

 

AMR (Adaptive Multi-
Rate) 

12.2 AMR122 

Table 1: List of investigated coding schemes  

The processing is done by applying the software as available 
from ITU and ETSI. The possibility of detecting speech pauses 
is available as part of most of the coding schemes as so called 
DTX mode to enable a discontinuous transmission. This mode 
is not used in all experiments presented in this paper. 
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Figure 1: The experimental setup 

The feature extraction can be done with the already 
standardized Aurora frontend [6] or with an advanced noise 
robust frontend [7] that will be standardized in the near future. 
The first frontend is more or less an usual cepstral analysis 
scheme where 13 Mel frequency cepstral coefficients (MFCCs) 
are calculated and the frame energy as a fourteenth parameter. 
The advanced frontend contains additional processing blocks 
for reducing the influence of background noise and 
compensating the bad effects of an unknown frequency 
characteristic e.g. caused by the microphone. The output 
consists also of 13 cepstral coefficients and the frame energy. 
The advanced frontend contains also a VAD to enable a DTX 
mode where the acoustic parameters might not be transmitted or 
not evaluated during speech pauses. As with the speech coding 
algorithms this DTX mode is not applied for the investigations 
presented in this paper. Both frontends contain additional 
compensation and coding schemes to transmit the acoustic 
features as a data stream at 4.8 kBit/s. It turned out that this 
compensation has almost no influence on the recognition 
performance. It is not applied in case of the already 
standardized frontend but is used with the advanced frontend.  
Both processing schemes are designed to handle speech data 
sampled at 8, 11 or 16 kHz. Only the 8 kHz mode is applied for 
these investigations because of the limitation to 4 kHz 
bandwidth due to the coding schemes. 
 
Recognition experiments have been run with the noisy TIDigits 
database also referred to as Aurora-2 database. Furthermore a 
HTK based HMM recognizer has been applied as used in the 
Aurora evaluation process [9]. The digits are modeled as whole 
word HMMs with the following parameters: 
• 16 states per word (according to 18 states in HTK notation 

with 2 dummy states at beginning and end) 
• simple left-to-right models without skips over states 
• mixture of 3 Gaussians per state 
• only the variances of all acoustic coefficients (No full 

covariance matrix) 
 
In case of the first frontend 12 MFCCs and the frame energy are 
taken as acoustic parameters. A single feature vector consists of 
39 components by adding the delta and acceleration coefficients 
as defined inside HTK. For the second frontend the zeroth 

cepstral coefficient and the frame energy are combined as a 
single component of the feature vector. Delta and acceleration 
coefficients are calculated with a slightly different approach as 
defined in the standard leading also to feature vectors with 39 
components in total.   

3. RECOGNITION RESULTS 

3.1. First ETSI frontend 

Recognition results are listed in table 2 when processing all 
training and test data with one of the coding schemes and 
extracting acoustic features with the already standardized 
frontend [6]. 

Coding scheme Total word 

accuracy(%) 

Word accuracy (%) 

(multi-condition only) 

PCM 73.23 86.39 

ALAW 70.15 85.76 

FR 68.31 85.28 

HR 66.44 82.45 

EFR 71.44 86.22 

AMR475 70.16 84.89 

AMR515 71.17 84.49 

AMR59 69.46 85.05 

AMR74 67.58 85.74 

AMR102 68.38 85.63 

Table 2: Word accuracy for training and testing the recognizer 
in the same coding mode  

The numbers in column 2 of table 2 describe the total word 
accuracy as an weighted average over 6 individual experiments 
where each experiment again considers several different noise 
conditions at a range of SNRs between 0 and 20 dB. All results 
are worse in comparison to the result without additional speech 
coding (PCM). As expected the additional encoding and 
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decoding leads to a deterioration of the recognition 
performance. The lowest accuracy is achieved for the half-rate 
scheme with a loss of about 7% word accuracy. 

3 of the 6 experiments are based on training with clean data 
only. The average word accuracy for these 3 experiments is in 
the range of 50 to 60%. Looking at such a low accuracy leads to 
a more random behavior with higher confidence intervals. This 
might be one reason for a certain inconsistency of the total 
results, e.g. the lower accuracy for AMR at 7.4 or 10.2 kBit/s in 
comparison to the 4.75 kBit/s mode. 

The other 3 experiments are based on training with clean and 
with noisy data in almost the same range of SNRs, also referred 
as multi-condition training mode. The average results for these 
3 experiments only are listed in the third column. These results 
show a more consistent behavior (as expected) e.g. with an 
better recognition performance for AMR modes with increasing 
data rate in  almost all cases.  

Recognition results are listed in table 3 for a few combinations 
of training the recognizer in one selected mode and testing with 
data processed in other coding modes. Best performance is 
achieved on average when training the recognizer on data 
without additional speech coding. This might be important to 
know for applying speech services in telecom networks with 
access from fixed and mobile networks. But it has to be taken 
into account that the influence of the cellular channel is not 
considered here. 

3.2. Advanced noise robust fr ontend 

Recognition results are presented in table 4 when processing all 
training and test data with one of the coding schemes and 
extracting acoustic features with the advanced robust frontend 
[7]. Word accuracy is again shown as average value over all 6 
experiments and as average over the 3 experiments in multi-
condition training mode. The average total accuracy is about 15 
to 16 % higher in comparison to the first standardized ETSI 
frontend. This shows impressively the introduced robustness of 
the advanced feature extraction scheme especially when 
training on clean data only. 

The recognition is again worse in all cases of applying speech 
encoding and decoding. The worst result is again achieved for 
the half-rate coding scheme. The total performance is about 7% 
less in terms of word accuracy. In comparison to the first ETSI 
frontend with also 7% loss for the half-rate scheme this 
corresponds too a much higher relative degradation. Fairly 
consistent results can be observed when looking at the increase 
of word accuracy for the increasing data rates of the AMR 
modes. This holds true for the total results as well as for the 
average results in case of training on multi-condition data. 

Coding scheme Total word 
accuracy(%) 

Word accuracy (%) 
(multi-condition only) 

PCM 89.30 91.55 

ALAW 88.88 91.53 

FR 87.31 90.28 

HR 81.77 87.18 

EFR 88.16 90.97 

AMR475 84.76 88.99 

AMR515 84.23 89.09 

AMR59 85.02 89.66 

AMR67 84.90 89.85 

AMR74 85.23 90.01 

AMR795 85.36 89.72 

AMR102 86.36 90.5 

AMR122 87.07 90.8 

Table 4: Word accuracy for training and testing the recognizer 
in the same coding mode  

Table 5 contains all results when training the recognizer on data 
without additional coding or training on data in one of the AMR 
coding modes and testing in all AMR modes. Again best 
performance is achieved on average when training the 
recognizer on speech data without additional en(de)coding. The 
average word accuracy increases when taking training data of 
an AMR mode at higher data rate. 

Another experiment is run by taking the HMMS as determined 
from the AMR122 mode and applying a few further iterations 
of embedded Baum-Welch reestimation with all training data at 
all AMR modes. This leads to HMMs trained on data of all 
AMR modes. Results are shown in table 6. No real 
improvement can be observed. It seems to be best again training 
the recognizer on data with highest speech quality. 

4. COMPARISON TO SUBJECTIVE 
LISTENING RESULTS 

The quality of speech encoding and decoding schemes is 
determined with subjective listening tests. Speech data are 
processed with the different coding techniques in several 
languages. The data consist of clean speech as well as of speech 
with additional background noise. In case of mobile 
communication a simulation of the transmission over the

 
Total word accuracy (%) for applying different coding schemes to test data  Coding scheme 

applied to 
training data 

PCM ALAW FR HR EFR AMR475 AMR74 AMR102 

PCM 73.23 73.44 73.04 67.02 71.93 71.83 71.92 72.14 

EFR 68.68 69.10 69.79 66.59 71.44 73.04 72.21 71.54 

AMR475 63.53 64.10 65.38 63.18 67.09 70.16 68.51 67.20 

Table 3: Word accuracy for training and testing in different coding modes with the first ETSI frontend 
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cellular channel can also be applied to these data. The 
processed speech signals are presented to listeners that rate 
their subjective impression on a scale between 1 and 5 with 5 
being the best. Averaging these subjective ratings over a big set 
of speakers and several languages and different noise 
conditions leads to so called MOS (mean opinion score) values. 
Such MOS values are listed in table 7 together with the 
recognition results (as already shown in table 4) when applying 
the advanced frontend and looking at the multi-condition 
training mode. The MOS values are taken from [10] and have 
been derived from listening to clean speech. A fairly good 
correlation can be seen between the subjective listening results 
and the objective recognition results. There might be a good 
chance to use such recognition experiments as an additional 
and cost saving method for the objective evaluation of speech 
coding algorithms. It might be worth to investigate other and 
more complex recognition tasks in this respect.  
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Total word accuracy (%) for applying different coding schemes to test data  
 

Coding scheme 
applied to 

training data AMR475 AMR515 AMR59 AMR67 AMR74 AMR795 AMR102 


