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Abstract 
The robustness of the ETSI (European Telecommunication 
Standards Institute) standardized feature extraction schemes is 
investigated for phoneme based recognition tasks of German 
speech data. The recognition tasks are an isolated command 
word recognition and the recognition of connected digits. The 
motivation of this work is the easy extensibility of a whole 
word recognition system by allowing also the recognition of 
phoneme based word HMMs (Hidden Markov Models). The 
recognition performance has been determined for different 
numbers of HMM states and different numbers of Gaussians 
per state. It turns out that fairly high recognition rates can be 
achieved also for noisy data when applying the second robust 
ETSI frontend. 

1. Introduction 
The authors have developed a speech dialogue system that is 
used for information services over the telephone [1]. The 
speech recognition of this system is based on whole word 
HMMs so that isolated or connected words can be recognized. 
One key feature of the system is a fairly high robustness to 
background noise and unknown frequency characteristics due 
to the use of a PMC (parallel model combination) adaptation 
scheme [2]. 
 

It has been investigated how the range of possible 
applications can be increased by introducing a phoneme based 
recognition. In many cases new applications with mostly 
natural dialogue require command words that do not exist in 
available databases. This causes the need of collecting new 
training data in case of using HMMs for whole words only. 
This time consuming task can be avoided by training a whole 
set of phoneme HMMs and concatenating word models from 
a sequence of phoneme models. The goal of this work is not 
the development of a phoneme based recognizer for 
continuous speech but the easy extensibility of a word based 
recognizer by e.g. command words that do not exist in 
available databases. It is investigated how the important 
HMM parameters, especially the number of states and the 
number of Gaussians per state have to be chosen for achieving 
a good recognition performance. 

 
The acoustic features for the recognition are extracted 

with a cepstral analysis scheme. To make the results of this 
work more globally utilizable, the experiments have been run 
with the two feature extraction schemes that have been 
standardized by the ETSI Aurora working group [3], [4]. 

 

Both standardized frontends are shortly described in the 
next section. The modelling of phonemes as monophones or 
triphones with HMMs is presented in section 3. The 
recognition experiments and the achieved results are 
described in section 4. 

2. ETSI frontends 
Two feature extraction schemes have been standardized by the 
ETSI working group called “Aurora”. 

The first standard [3] is an usual cepstral analysis scheme 
where 13 cepstral coefficients are determined based on a Mel 
filterbank with 23 channels. As an additional parameter the 
logarithmic frame energy is calculated in the time domain. 
The cepstral coefficients C1 to C12 without the energy 
coefficient C0 but including the frame energy are used as 
acoustic parameters for these investigations. Delta and Delta-
Delta parameters are calculated as it has been realized in  the 
HTK software [5]. Thus a feature vector consists of 39 
components. We refer to this frontend by the abbreviation 
ETSI-1 in this paper. 

 
The second standard [4] is also a cepstral analysis scheme 

that has been extended by additional signal processing blocks 
to reduce the influence of stationary background noise and of 
unknown frequency characteristics. This frontend contains 
also a slightly different method for calculating the Delta and 
Delta-Delta parameters. Again a feature vector consists of 39 
parameters.  The abbreviation ETSI-2 is used as reference to 
this analysis scheme throughout this paper. 

 
The short-term analysis window is shifted by 10 ms in 

both standards so that 100 vectors per second are created as 
output. 
 

3. Phoneme models 
Phonemes are modelled by HMMs where the number of states 
and the number of Gaussians per state are the two main 
parameters that have been investigated within the scope of 
this work. The HMMs are determined from speech which has 
been recorded over the telephone, mainly in fixed networks. 
Telephone speech is taken for the training because of the 
target application in telephone based information services. A 
database with recordings of about 1000 speakers has been 
available for the training. In total this comes up to about 48 
hours of speech for training. This telephone data represents 
the usual acoustic environment in fixed networks without 
containing a lot of noise. 
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We created a time labelling on the basis of phonemes for 
all used recordings. A Sampa like notation has been applied 
for the description of the whole set of phonemes. The 
labelling has been realized by initially training a subset of 
phonemes with a small amount of hand labelled spellings. By 
processing more and more data through several stages and 
increasing the number of phonemes at the same time, reliable 
labels could be created by applying a forced alignment 
technique. 

 
We investigated the two modelling approaches of 

describing the phonemes as monophones or as triphones. In 
case of triphones we considered only five classes of phonemes 
for the description of the preceding and the succeeding 
phoneme. The members of the five phoneme classes are listed 
in table 1. 

Table 1: Phoneme classes for triphone modelling 

Class Description Members 
V vowels a:  e:  i:  o:  u:  a  E  I  O  U  

y:  oe  Oe  ae  ar  an  E:  @  
F Fricatives h  f  v  z  x  s  S  C 
N Nasals m  n  l  r  j  Y  N  Z  On 
S Plosives t  g  p  d  k  b 
D Diphones aI  OY  aU 

 
The training of the HMMS has been performed with the 

HTK package [5] by applying the tool for creating initial 
models first and by refining the parameters with the two tools 
for a Baum-Welch reestimation on isolated units first and on 
embedded units later on. 

 
Phoneme models with 3 states do not allow the skipping 

of a single state where models with more than 3 states allow 
the skipping over one state.  

4. Recognition Experiments  
The main target of these investigations is the extensibility of a 
robust word based recognizer by HMMs, that consist of 
concatenated phoneme models. Because of this, two 
recognition tasks have been considered. The first one is a 
simple isolated command word recognition. The vocabulary 
consists of 52 German command words. 7650 utterances are 
used in total which are also part of the training database. The 
abbreviation CMD will be used throughout this paper to refer 
to this task. 
 

The second task is the recognition of connected German 
digits. Three sets of test data have been applied from three 
different databases. 

 
The first set S1 consists of about 2100 utterances 

containing about 10000 digits in total. This data has also been 
used for the training. 

 
The second set S2 contains about 1900 utterances with a 

total of about 7000 digits. This data has not been recorded 
over telephone but with a close talking microphone in a quiet 
environment and a direct connection to the recording system. 
The database contains recordings from 90 speakers that are 
different from the speakers in set S1. The speakers represent a 

wide range of German dialects. The results on this data can be 
used for showing the influence of a different acoustic 
environment on the recognition performance. 

 
The third set S3 of connected digits contains a few 

recordings of the German  SpeechDatCar data collection. This 
subset has also been used for the experiments of the ETSI 
standardization activities. This data has been recorded in the 
noisy car environment. The set contains about 3000 
utterances with a total of about 16500 digits. This data is 
intended to show the influence of a noisy background 
situation. 

 
An overview about all speech data that has been applied 

for these investigations is given in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Overview about training and test data. 

Most of the experiments are based on the use of 
monophones. Only a few results are presented to show and 
proof the gain of using triphone models instead. 

4.1. Monophone models 

Tables 2 and 3 contain the error rates for recognizing the 
isolated command words (CMD) when applying both ETSI 
frontends and the HMMs from monophone models. Tables 4 
and 5 contain the error rates for the more complex task of 
recognizing digit set S1. Error rates include insertion and 
deletion errors. 
 

As expected error rates are smaller for the easier task of a 
isolated word recognition. Comparing both frontends the 
recognition performance is slightly higher for the robust 
ETSI-2 frontend in general.  

 
The results in all tables show an increasing performance 

for an increasing number of Gaussians per state where the 
gain is getting smaller for a higher number of Gaussians. 
Doubling the number of Gaussians comes along with also 
doubling the demand on memory and doubling the 
computational expense. 

Test set S3 

Test set S2 

Training 
Data 

Telephone data 

~32000 utterances in total 

 

Isolated command words 

~10000 digits 

Test set CMD 

Test set S1 

Close talking mic. 

~7000 digits 

SpeechDatCar 

~16500 digits 
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Table 2: Word error rates (%) for isolated command word 
recognition (CMD) with ETSI-1 frontend 

Number 
of states 

Number of Gaussians per state 

 1 2 4 8 16 
3 10,4 5,4 4,6 3,5 2,9 
5 8,1 5,5 4,2 3,0 2,7 
7 5,5 3,5 2,4 1,9 1,7 

Table 3: Word error rates (%) for isolated command word 
recognition (CMD) with ETSI-2 frontend 

Number 
of states 

Number of Gaussians per state 

 1 2 4 8 16 
3 9,9 4,9 4,0 2,8 2,7 
5 7,1 4,3 3,5 2,8 2,4 
7 4,8 3,1 2,2 1,5 1,3 

Table 4: Word error rates (%) for connected digit 
recognition (set S1) with ETSI-1 frontend 

Number 
of states 

Number of Gaussians per state 

 1 2 4 8 16 
3 19,2 18,2 14,0 12,5 11,2 
5 22,0 16,7 14,9 12,8 11,8 
7 11,6 7,9 6,2 5,1 4,4 

Table 5: Word error rates (%) for connected digit 
recognition (set S1) with ETSI-2 frontend 

Number 
of states 

Number of Gaussians per state 

 1 2 4 8 16 
3 20,2 16,3 11,7 9,6 10,7 
5 20,3 14,3 12,5 10,3 8,9 
7 9,4 6,4 4,7 4,3 3,8 

 
 
The error rates decrease for an increasing number of 

HMM states. Especially for the more complex task of a 
connected digit recognition there can be seen a considerable 
gain when applying models with 7 states in comparison to 
models with 5 states. We ran a few experiments with 9 states 
per HMM. It turned out that we have already reached the 
status of a certain saturation with 7 states because no further 
improvement could be obtained with 9 state HMMs. We 
achieved e.g. an error rate of 1,6 % on the command word 
task and an error rate of 3,9 % on the connected digit set S1 
with HMMs with 9 states and 16 Gaussians per state when 
applying the ETSI-2 frontend.  

 
It has to be considered that these results have been 

achieved for recognizing fairly clean data that has also been 
used for training. They are intended to give a first overview 
about the principal behaviour in dependency of the chosen 
HMM structure. More interesting is the recognition of speech 
data, that has been recorded in a different acoustic 
environment and that has not been used for training. For 

better readability further recognition results are presented as 
graphs instead of tables. 

 
Word error rates are shown in figures 2 and 3  for the 

recognition of all data sets when applying the ETSI-1 
respectively the ETSI-2 analysis scheme. The number of 
Gaussians is kept constant at a value of 16. The number of 
HMM states is varied between 3 and 9 states.  

 

Figure 2: Word error rates for a varying number of HMM 
states (with 16 Gaussians) applying the ETSI-1 frontend. 

 

Figure 3: Word error rates for a varying number of HMM 
states (with 16 Gaussians) applying the ETSI-2 frontend. 

As already mentioned, it can be seen, that no additional 
gain can be achieved by increasing the number of HMM 
states from 7 to 9. The results are even getting worse in most 
cases.  

 
Comparing the results of figure 2 where the ETSI-1 

frontend has been applied with the results of figure 3 where 
the robust ETSI-2 analysis scheme has been used, it turns out 
that there exist only small differences for the command word 
recognition and for test set S1, which have been part of the 
training data. 
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But the robustness of the ETSI-2 frontend gets obvious 
when comparing the results for test sets S2 and S3 that have 
been recorded in different acoustic environments than the 
training data. The data of set S2 differs mainly with respect to 
the frequency characteristic and it contains less noise than the 
data used for training. Set S3 has been recorded in the car 
environment so that this data is distorted by additive 
background noise. The error rates for the ETSI-1 frontend are 
in the range up to almost 40 % where the rates for the ETSI-2 
frontend are below 15 %.  

 
The recognition performance is almost the same for test 

sets S1 and S2 with 7 state HMMs in case of the ETSI-2 
analysis scheme eventhough this data has been recorded in 
different acoustic scenarios. This impressive robustness can 
also be observed when looking at the curves in figure 4. 
Figure 4 contains the results for 7 state HMMs where the 
number of Gaussians is increased from 1 to 16. The curves for 
tests S1 and S2 are close together. It can be seen that no major 
additional gain can be achieved when increasing the number 
of Gaussians above a value of 8. 

 

Figure 4: Word error rates for a varying number of 
Gaussians (with 7 state HMM) applying the ETSI-2 

frontend. 

4.2. Triphone models 

The error rates are presented in figure 5 when applying 
triphone in comparison to monophone models as they have 
been decribed before. Again only the ETSI-2 frontend is 
applied and the HMMs consist of 7 states so that the results 
for the monophone models are identical to the curves shown 
in figure 4. Results for set S2 are not presented because they 
are almost the same as for set S1. 

 
An expected gain can be achieved in all experiments 

because of the better phoneme modelling as triphones. The 
error rates are already quite low for a small number of 
Gaussians so that the relative improvement for an increasing 
number of Gaussians is not as high as for monophones. 

 

Figure 5: Word error rates for monophone (“mono”) and 
triphone (“tri”) models (with 7 state HMM) applying the 

ETSI-2 frontend. 

5. Conclusions 
Recognition results are presented for the phoneme based 
recognition of isolated command words and connected digits 
when applying the feature extractions schemes as they have 
been standardized by ETSI inside the Aurora working group. 
It turns out that a fairly high robustness can be achieved with 
the second robust ETSI frontend for recognizing speech data 
that has been recorded in different acoustic environments than 
the training data. The use of phoneme HMMs with 7 states 
and about 8 Gaussians per state offers already a good 
recognition performance without the need of high 
computational expense. An additional gain can be obtained by 
applying triphone models instead of monophone models. 
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