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Abstract 
The highest recognition performance is still achieved when 
training a recognition system with speech data that have been 
recorded in the acoustic scenario where the system will be 
applied. We investigated the approach of using several sets of 
HMMs. These sets have been trained on data that were 
recorded in different typical noise situations. One HMM set is 
individually selected at each speech input by comparing the 
pause segment at the beginning of the utterance with the pause 
models of all sets. We observed a considerable reduction of 
the error rates when applying this approach in comparison to 
two well known techniques for improving the robustness. 
Furthermore, we developed a technique to additionally adapt 
certain parameters of the selected HMMs to the specific noise 
condition. This leads to a further improvement of the 
recognition rates.  
Index Terms: robust speech recognition, HMM adaptation 

1. Introduction 
A number of robust feature extraction schemes have been 
developed, e.g. [1],[2], that lead to an improved recognition in 
acoustic situations where background noise is present or the 
speech spectrum is modified by unknown frequency responses. 
Alternatively, several HMM adaptation techniques, e.g. 
[3],[4],[5], are available to adapt the parameters of HMMs to 
the acoustic scenario. Furthermore, other techniques like the 
reconstruction of missing features allow an improved 
recognition of noisy speech data. 

Nevertheless, best recognition rates are still achieved by 
training the reference patterns on data that have been recorded 
in exactly the same acoustic environment like the one where 
the recognition system is applied, e.g. [6],[7]. But this 
approach is based on the knowledge of the acoustic scenario 
and on the assumption that the acoustic conditions will not 
change while using the recognizer. An example for a fairly 
stationary acoustic scenario is the application of a recognition 
system inside a car.  

In case the recognition system will be applied in a number 
of different acoustic environments the system can be trained in 
a so called multi-condition mode, e.g. [8]. Speech data are 
used for training that have been recorded under all known 
conditions. Usually, a recognition performance can be 
achieved with this approach that is somewhere in between the 
performance of a system trained on clean data only and a 
system trained on the specific noise condition. As in case of 
training with data from a single noise condition, the noise 
scenarios for the multi-condition training have to be known in 
advance. 

We investigated the approach to train several sets of 
HMMs that represent a broad range of noise conditions. Based 
on recordings of about 30 typical background noise situations 
we clustered these noise recordings in 5 categories. For each 

cluster we created noisy speech data at a SNR of 5 dB for 
training an individual set of HMMs. At each speech input this 
set of HMMs is selected that matches best the actual acoustic 
condition. This is done by comparing the pause segment 
before the speech starts with the pause HMMs of the 5 noise 
clusters. Additionally, the cepstral and energy mean 
parameters of the selected HMMs can be adapted to the 
specific noise condition at each speech input. The adaptation 
approach has been derived from [5]. 

In the next section we will present the motivation for our 
work by comparing the results of two robust recognition 
systems against the performance of training a system on 
specific noise conditions. Then, we introduce our approaches 
to use multiple sets of HMMs and as additional processing 
step to adapt the cepstral and energy parameters of the HMMs 
to a specific noise condition. The results of different 
recognition experiments demonstrate the applicability of the 
new approaches. 

2. Motivation 
To motivate the investigations presented in this paper we 
compared the performance of two robust recognition systems 
trained on clean data only with the recognition rates that can 
be achieved by training a system with speech data of a specific 
noise situation at a certain SNR (signal-to-noise ratio). 

The speech data of two test conditions were taken from the 
experimental framework called “Aurora-5” [9]. The Aurora-5 
set-up contains distorted versions of the TIDigits data. Besides 
the presence of background noise Aurora-5 includes also test 
sets that simulate the recording in hands-free mode and the 
speech transmission in cellular networks. For our 
investigations we looked at two conditions where “car” noise 
was added in combination with a G.712 filtering and where 
“interior” noise was added to the designated TIDigits test data. 
G.712 is an ITU recommendation to simulate the bandpass 
characteristics of telephone devices. Aurora-5 extends the 
earlier “Aurora-2” framework to a more complex but also 
more realistic set-up. The speech data for each noise condition 
have been created by randomly adding one out of a whole set 
of noise signals that represent the specific situation. For 
Aurora-2 only one noise recording was taken. 

The word error rates are presented in tables 1 and 2 when 
recognizing the two versions of the TIDigits with car noise or 
with interior noise added at 4 SNRs. We applied the robust 
feature extraction scheme as it has been standardized by ETSI 
[1]. Furthermore, we looked at a second robust system based 
on an usual cepstral analysis without additional processing 
blocks to create robust features but including an adaptation of 
the HMM parameters to the specific background noise of each 
utterance [5]. Both recognition systems are trained on clean 
data only. Each test condition contains the recognition of the 
designated TIDigits test set containing 8700 utterances of 
adult speakers with a total of about 28000 digits. 
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SNR/dB 15 10 5 0 

robust features 1.3 2.4 5.9 16.0 

HMM adaptation 1.2 2.1 5.8 18.7 

Table 1. Word error rates (%)  for “car” noise. 

SNR/dB 15 10 5 0 

robust features 2.6 5.7 14.4 35.3 

HMM adaptation 2.4 4.9 13.9 38.3 

Table 2. Word error rates (%)  for “interior” noise. 

Both recognition systems show a comparable performance. 
The error rates are higher for the condition of interior noise 
due to the more “non stationary” noise characteristics in 
comparison to the fairly stationary car noise situation. Interior 
noise includes recordings, e.g. in a restaurant, in an office, 
e.t.c. 

To determine the recognition performance with HMMs 
that have been trained on data from a specific noise condition 
we created noisy versions of the designated TIDigits training 
data for each noise condition at the desired SNRs [10]. We 
applied a usual cepstral analysis scheme where the 12 Mel 
frequency cepstral coefficients C1 to C12 and the logarithmic 
energy as well as the Delta and Delta-Delta features are 
extracted. Neither the feature extraction does contain specific 
blocks for improving the robustness nor the HMMs are 
adapted to the noise condition. The word error rates are 
presented in table 3 for all possible combinations of training 
and test conditions in case of car noise. 

 
SNR/dB of test data  

15 10 5 0 

15 0.8 2.0 8.5 32.5 

10 0.9 1.4 4.4 18.5 

5 2.3 1.8 3.1 10.5 

SNR/dB 

of 

training 

data 0 11.7 6.0 4.7 8.9 

Table 3. Word error rates (%)  for “car” noise. 

The highest performance can be achieved when training 
the recognition system on the specific noise and SNR 
condition. Similar results occur when running these 
experiments on data with interior noise. 

3. Recognition with multiple HMM sets 
We took the results presented in the 
previous section as motivation to set up a 
recognition system with 5 sets of noisy 
HMMs as shown in figure 1. 

 
As output of the analysis block the 12 Mel frequency cepstral 
coefficients C1 to C12 and the logarithmic energy are 
extracted from 25 ms segments of speech. The creation and the 
selection of one of the 5 HMM sets are described in the two 
following subsections. Each set contains 22 gender dependent 
HMMs for the 11 digits including the two versions “zero” and 
“oh” for the digit “0”. Each HMM consists of 16 states and 
each state describes the occurrence of each acoustic parameter 
by a mixture of 2 Gaussian distributions. The pauses 

containing the background noise are modeled by a one state 
model with a mixture of 8 Gaussian distributions. The training 
is done with the corresponding tools of HTK [11]. 

The recognition of the digit sequences is based on the 
usual approach to calculate the probabilities that the observed 
sequence of feature vectors can be generated from a sequence 
of HMM states by means of the Viterbi algorithm. The 
complete recognition scheme as shown in figure 1 is 
implemented as modules in Matlab. 

3.1. Creation of HMM sets 

To create the 5 sets of noisy HMMs we took a collection of 
about 30 noise signals. These noise recordings reflect the 
typical scenarios where speech recognition systems might be 
applied. The noise signals were recorded 

• inside different cars, 

• inside buses, different types of trains, 

• at public places like airports, train stations, exhibition 
halls, e.t.c., 

• in restaurants, offices, e.t.c. 
 

To avoid the huge effort of creating an individual set of 
HMMs for each noise condition and based on the knowledge 
that some noise signals have similar spectral characteristics we 
clustered the noise signals in 5 categories. The clustering is 
based on estimating the spectral similarity between all noise 
signals. All signals are analyzed with the short-term cepstral 
analysis of the recognition system. Gaussian distribution 
density functions are estimated for each cepstral coefficient 
and each noise signal. A measure describing the similarity 
between 2 noise signals is derived from the comparison of the 
corresponding distribution functions. All similarity measures 
are taken as input for a k-means clustering. Looking at the 
results we find 5 categories as listed in table 4. 

 
Cluster Noise Signals 

1 inside cars 

2 at public places like airports, restaurants, … 

3 inside cars 

4 inside buses, trains 

5 at public places like train stations, on the 
street, … 

Table 4. Noise categorization. 

We created noisy training data for each cluster by randomly 
selecting one of the corresponding noise signals and adding a 
randomly selected segment to each clean training utterance at  
 
 
 
 

 
 
 
 
 

 

Figure 1: Speech recognition with multiple HMM sets. 

565



a SNR of 5 dB. We focused on the SNR of 5 dB because we 
observed a fairly good performance over the whole SNR range 
in table 3 with HMMs trained at 5 dB. Furthermore, we will 
present a scheme for adapting the parameters of HMMs to an 
individual noise condition. Especially, the adaptation of the 
energy parameter should compensate a possible difference in 
SNR between training and test data. 

3.2. Selection of HMM set 

During recognition one of the 5 HMM sets is selected. The 
selection is based on calculating the probabilities that the 
noise segment at the beginning of each utterance can be 
generated by one of 5 Gaussian mixture models (GMMs). The 
GMMs are the single state HMMs that are determined in the 
training phase to model the pause containing the noise 
characteristics in each cluster. The selection is finished at the 
beginning of speech so that this approach can be applied in a 
real-time recognition system without causing any delay. The 
probabilities are calculated by looking at the 12 static cepstral 
coefficients C1 to C12 only. Thus, the selection is independent 
of the noise energy. 

The results of the noise selection process are shown in 
figures 2 and 3 for the two Aurora-5 test sets with car 
respectively interior noise added at a SNR of 5 dB. The figures 
show the number of utterances from the total of 8700 that are 
mapped to each of the 5 clusters.  

 

Figure 2: Results of noise classification. 

 

  Figure 3: Results of noise classification. 

The results proof that the mapping works quite well. 
HMM sets 1 and 3 are the ones that have been trained on car 
noise data. Sets 2 and 5 have been trained on speech data 
containing the different types of interior noise. Results are 
only shown for the SNR of 5 dB because the classification to 
the noise clusters is almost identical for the SNRs of 0, 10 and 
15 dB. This is due to using the ceptral coefficients C1 to C12 
only for estimating the similarity of the spectral shapes 
without taking into account the energy of the noise segment. 

3.3. Recognition results without adaptation 

The word error rates are shown in figures 4 and 5 when 
selecting a set of HMMs for the recognition of each individual 
utterance as described in the previous subsection. No further 
adaptation is applied on the selected HMMs.  

 

  Figure 4: Word error rates with multiple HMM sets. 

 

  Figure 5: Word error rates with multiple HMM sets. 

The results for the approach of using multiple sets of HMMs 
are compared against the recognition with a single set of 
HMMs that has been trained on clean data only. The error 
rates are presented for the single set of HMMs without and 
with an adaptation [5] to the specific noise condition. A 
considerable reduction of the error rates can be observed for 
the low SNRs of 0 and 5 dB due to training the sets of noisy 
HMMs on data with an SNR of 5 dB. 

3.4. HMM adaptation 

We derived a new approach from an existing adaptation 
scheme [5]. The earlier approach contains an adaptation of the 
acoustic parameters contained in HMMs that have been 
trained on clean data. We modified the existing scheme to 
adapt the means of the acoustic parameters as contained in the 
selected set of noisy HMMs to the specific noise 
characteristics of each utterance. One has to keep in mind that 
each set contains the characteristics of several slightly 
different noise signals at a SNR of 5 dB. The intention is an 
adaptation of the spectral and energy parameters to the specific 
noise condition. 

We want to describe the basic idea without presenting all 
mathematical details. Estimating the noise spectrum and the 
noise energy from the pause segment at the beginning of each 
utterance we compare these estimates with the corresponding 
spectrum and energy of the selected pause HMM. The 
spectrum and the energy as contained in the pause HMM are 
derived from the average of the cepstral and energy mean 
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parameters. The differences in spectrum and energy are 
estimated by comparing the noise spectra and the noise 
energies of the speech input and the pause HMM. These 
differences are taken to adapt the means of the static cepstral 
and energy coefficients in each HMM state. The spectral 
adaptation is done in the linear Mel spectral domain by 
transforming the cepstral coefficients back and forth again. 

Furthermore, an unknown frequency characteristic is 
estimated by comparing the short-term spectra of the input 
utterance to the corresponding spectra that can be derived after 
the recognition from the state sequence with highest 
probability. This is based on the legal assumption that the 
frequency characteristic usually changes only slowly from one 
speech input to the next one. The result of the adaptation 
process is visualized in figures 6 and 7. The figures show 
spectrograms as they can be derived from the average cepstral 
means that are contained in a HMM [5]. 
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Figure 6: Spectrogram of a noisy HMM for the digit “6”. 
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  Figure 7: Spectrogram of the adapted HMM. 

Figure 6 shows the spectrogram of a selected noisy HMM for 
the digit “6”. The formant spectrum of the vowel “i” gets 
visible in the middle of the word where the fricatives at the 
beginning and at the end have their energy at higher 
frequencies. The average noise spectrum as contained in the 
training data can be seen when looking at the short-term 
spectrum at the end of the word. In case of a clean HMM the 
spectrum at the end would take values close to zero. 
Comparing the noise spectra in figures 6 and 7 at the word 
endings we observe in figure 7 the adaptation to the specific 
spectral characteristics of the individual input utterance. The 
speech of this individual utterance has also been filtered with 

the G.712 bandpass characteristic. The adaptation to the 
bandpass characteristic is visible as attenuation of the 
fricatives’ spectral features at higher frequencies. 

3.5. Recognition results with adaptation 

The word error rates are shown in figure 8 when applying the 
additional adaptation on the speech data distorted with car 
noise. We observe a further improvement of the recognition by 
adapting the HMMs of the selected set to the specific noise 
condition. Similar improvements occur in the case of interior 
noise. 

 

Figure 8: Error rates with additional adaptation. 
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