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Abstract

Looking at practical application scenarios of speech recognition systems several distortion effects exist that have a major influence on
the speech signal and can considerably deteriorate the recognition performance. So far, mainly the influence of stationary background
noise and of unknown frequency characteristics has been studied. A further distortion effect is the hands-free speech input in a reverber-
ant room environment.

A new approach is presented to adapt the energy and spectral parameters of HMMs as well as their time derivatives to the modifi-
cations by the speech input in a reverberant environment. The only parameter, needed for the adaptation, is an estimate of the rever-
beration time. The usability of this adaptation technique is shown by presenting the improvements for a series of recognition
experiments on reverberant speech data. The approach for adapting the time derivatives of the acoustic parameters can be applied in
general for all different types of distortions and is not restricted to the case of a hands-free input.

The use of a hands-free speech input comes along with the recording of any background noise that is present in the room. Thus there
exists the need of combining the adaptation to reverberant conditions with the adaptation to background noise and unknown frequency
characteristics. A combined adaptation scheme for all mentioned effects is presented in this paper. The adaptation is based on an esti-
mation of the noise characteristics before the beginning of speech is detected. The estimation of the distortion parameters is based on
signal processing techniques. The applicability is demonstrated by showing the improvements on artificially distorted data as well as
on real recordings in rooms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction The drawback of a hands-free speech input is a modifi-
cation of the speech by the acoustic environment when the

The use of speech recognition as alternative input device  input takes place in a room. The influence of transmitting

is especially of interest where the user has not his hands
available for controlling a keyboard or mouse. Quite often
this input mode comes along with the need of a hands-free
speech input. For reasons of practical usage and personal
comfort it is especially of interest without the need of wear-
ing a close-talking microphone.
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speech in a room can be modeled as superposition of the
sound on the direct path from the talker’s mouth to the
recording microphone and multiple reflections of the sound
at the walls and any equipment inside the room. For
stationary conditions the transmission can be modeled as
convolution of the speech with a room impulse response
(RIR). But the RIR changes as soon as the talker moves
in the room or room conditions change like in case of open-
ing a door or a window or other people moving in the
room. Thus the adaptive estimation of the RIR is a quite
difficult and complex task.
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Several approaches exist for enhancing speech that has
been recorded in hands-free mode inside rooms. Some of
these approaches have also been applied for the improve-
ment of speech recognition. The methods can be separated
in single and multi-channel processing techniques. Most of
the multi-channel approaches (e.g. Omologo et al., 1998;
Bitzer et al., 1999; Liu and Malvar, 2001; Seltzer et al.,
2004), are based on a beamforming technique to reduce
the influence of the reflected sound or on a correlation
based multi-channel processing. A variety of different tech-
niques are the basis for the single channel approaches (e.g.
Avendano and Hermansky, 1996; Kingsbury, 1998;
Yegnanarayana and Murthy, 2000; Gelbart and Morgan,
2002; Tashev and Allred, 2005; Wu and Wang, 2005;
Kinshita et al., 2005). Some are based on modifying the
envelope contours of subband energies.

Only a few approaches exist that try to improve speech
recognition by modifying the pattern matching process
(Couvreur et al., 2001; Palomiki et al., 2002). One method
(Raut et al., 2005) is also based on an adaptation and mod-
ification of HMM parameters as in the approach presented
here.

Looking at HMMs that are used for modeling speech in
recognition systems, the detailed knowledge about the
transmission as it is given by a RIR is not needed. Each
state of a HMM represents a short speech segment with
several tenth of milliseconds duration. The state contains
information about the distribution of some spectral param-
eters within the segment. Usually a type of MEL filterbank
is applied. In general HMMs describe speech with a quite
low resolution with respect to time and frequency in com-
parison to the detailed description with a RIR. Thus the
estimation of the RIR is not really needed to include the
modifications of the HMM parameters that are caused by
the hands-free speech input.

A new approach is presented in the next section for
adapting the parameters of HMMs to the speech transmis-
sion inside a room. The method is based on the description
of a room transmission by an impulse response with an
exponentially decaying envelope as approximation for a
real RIR. This approximation is applied to the fairly rough
modeling of speech as a sequence of HMM states. As con-
sequence of the exponentially decaying shape of the
impulse response, the acoustic excitation at a certain point
in time will also be seen at later time segments. The effect of
reverberation is an temporal extension of an acoustic exci-
tation. This extension is modeled by adding contributions
of earlier states with respect to energy and spectral param-
eters. The only parameter, needed for the adaptation, is an
estimate of the reverberation time T60 that defines the con-
tour of the exponentially decaying RIR. Several recogni-
tion experiments have been performed to proof the
usability of the new approach.

In most hands-free speech input situations background
noise is present in the room. Thus, the HMM adaptation
for the effects of a hands-free speech input is only useful
when it can be combined with a technique for compensat-

ing the influence of stationary background noise and of an
unknown frequency characteristic. During the recent years
a lot of investigations have been carried out to reduce the
deterioration of the recognition performance due to addi-
tive background noise and unknown frequency characteris-
tics. The approaches are either based on the extraction of
robust features in the front-end (e.g. Macho et al., 2002;
Gadrudadri et al., 2002; ETSI, 2003), or on the adaptation
of the HMM parameters to the noise conditions (e.g. Gau-
vain and Lee, 1994; Minami and Furui, 1996; Sankar and
Lee, 1996; Gales and Young, 1996; Gales, 1997, Wood-
land, 2001). Most of the adaptation techniques try to esti-
mate some kind of HMM parameter mapping with a
maximization of the likelihood score as optimization crite-
rion. This work uses signal processing approaches for esti-
mating the distortion effects. The estimated distortion
parameters are taken for the adaptation on the basis of a
signal processing model that describes the spectral modifi-
cations due to the distortions. A frequency weighting can
be caused, e.g. by the special characteristics of the record-
ing microphone. In case of a hands-free speech input a
frequency weighting might also occur due to the frequency-
dependency of T60. This is not covered by the new
approach which assumes one frequency independent value
for T60 so far. But it can be compensated with an addi-
tional adaptation to unknown frequency characteristics.

This paper shows how the new adaptation technique can
be combined with the adaptation of HMMs to additive
noise and unknown frequency characteristics (Hirsch,
2001a). This approach is based on the well known PMC
method (Gales, 1995). The results of several recognition
experiments are presented in the last chapter that proof
the usability of the combined adaptation to all distortion
effects as they can occur in real application scenarios of
speech recognition systems. The achieved results are
compared to the application of the well-known MLLR
(maximum likelihood linear regression) approach (Leggeter
and Woodland, 1995) as an alternative adaptation
technique.

2. Adaptation to hands-free speech input

The new approach for adapting the energy and spectral
parameters of HMMs will be derived in this section. It is
based on the approach of modeling the transmission in a
reverberant room by an impulse response with an ideal,
exponentially decaying shape. This will be presented in
Section 2.1. Section 2.2 describes the adaptation of the sta-
tic energy and spectral parameters of HMMs derived from
the ideal modeling of the RIR. Finally Section 2.6 presents
a new technique to adapt also the time derivatives of the
energy and spectral HMM parameters.

2.1. Modeling the influence of a hands-free speech input

The multiple reflections of sound in a room can be ide-
ally described by an exponential decay of the acoustic
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energy which has been the result of early investigations in
room acoustics (Kuttruff, 2000). This leads to a room
impulse response /(¢) with an exponentially decaying shape

61n(10)

E(t)=Eo-e "o '

Ey = energy of the acoustic excitation

with

61n(10)

= () ~e To . (1)

The only parameter for the description of the exponen-
tial shape is the reverberation time T60 that takes approx-
imately values in the range of about 0.2-0.4 s for smaller
rooms and of about 0.4-0.8 s for larger rooms. It can take
values above 1 s for very large rooms like churches. The
reverberation time depends on the interior in the room
and the individual absorption characteristics of the walls.

The RIR can be transformed to the room transfer func-
tion by means of a Fourier transform. The room transfer
function has a contour that changes very fast along fre-
quency. Usually only the envelope of the room transfer
function is of interest when looking at the filterbank
approaches that are applied for extracting acoustic features
in speech recognition. This effect can be covered by an
adaptation to an unknown frequency characteristic.

More important for the frame based analysis in speech
recognition is the influence on the contour of the short-
term energy along time. The energy contours of a speech
signal are shown in Fig. 1 before and after the transmission
in a room. The energy is usually estimated as short-term
energy in frames of about 20 ms duration. It can be seen
that the reverberation leads to an artificial extension of
each sound contribution. This extension occurs as so called
reverberation tail with the exponentially decaying shape of
the RIR. The same effect will also be seen when looking at
the energy contours in single subbands of a MEL based filt-
erbank that is usually applied in the front-end of a speech
recognition system.

clean
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Fig. 1. Energy contours of a speech signal in clean and reverberant
condition.

Transforming such energy contours to the so called
modulation spectrum by means of a Fourier transform
leads to the estimation of the modulation transfer function
m(F) (Houtgast et al., 1980) which can be mathematically
described as

m(F) = : . ()

2
\/1+ (27 F- o)

The low pass characteristic of the modulation transfer
function is shown in Fig. 2 for different values of T60.
The cut-off frequency of the low pass characteristic is shift-
ing to lower values of the modulation frequency for
increasing values of T60. This corresponds to longer
reverberation tails for higher values of T60. The artificial
extension of sound contributions can lead to masking the
acoustic parameters of low energy sounds by the parame-
ters of a preceding sound with higher energy.

2.2. Adaptation of static parameters

Looking at a sequence of HMM states the acoustic exci-
tation described by the parameters of a single state will also
occur in succeeding states at a certain attenuation. This is
based on the assumption that the HMMs have been trained
on clean speech, recorded with a close talking microphone.
Fig. 3 tries to visualize this effect.

Each state S; of a HMM describes a speech segment
with an average duration dur(S;) that can be derived from
the transition probability p(S;|S;) to remain in this state.

1
dur(S;)) = ——<5~ - tni
W) =1 sy
for all states S; with 1 < i < NR_states, (3)

where t,;r 1S the time for shifting the analysis window in
the feature extraction and NR_states is the number of
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Fig. 2. Modulation transfer functions for different values of T60.
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Fig. 3. The distribution of energy at state S; due to reverberation.

states of an individual HMM. t4,;r; takes a value of 10 ms
for all analysis schemes applied in these investigations. This
corresponds to a frame rate of 100 Hz.

The energy contribution of the acoustic excitation in the
first state to a succeeding state S; can be estimated by inte-
grating the squared RIR as defined by Eq. (1) over the time
segment of the succeeding state

1(S1) i—1
oy = / R (1)0t  where £,(S;) = Zdur(Sj) and 7.(S;)
ts j=1

(8i)

= 1,(S;) + dur(S;) and / ) R ()0t = 1. (4)

Given an estimate of the reverberation time T60 the con-
tribution factors can be individually calculated for all states
of all HMMs. The approach for estimating T60 will be
described later.

Usually each state of a HMM is defined by a set of spec-
tral parameters like the MEL frequency cepstral coeffi-
cients (MFCCs) and an energy parameter. These
parameters are the means of Gaussian distributions. The
corresponding variances are needed as further parameters
to completely define the shape of the Gaussians.

The mean of an energy parameter at an individual state
S; can be adapted by adding the energy contributions of the
state itself and the preceding states

E(S;) = o - E(S;) + o1 - E(Sic1) + %iin - E(Sin) + -+

= Z %ij E(Sj)- (5)

In the same way the means of the power density spectra
can be adapted. In case of using MFCCs, the cepstral coef-
ficients have to be transformed back to the spectral domain
first.

{Co,C1,Ca,. .., Caieep ) {log (1X1]),log (|X3]), - .,
10g (IXxr_me)} = X 1], X3, - [X kel }s (6)

where NR_cep is the highest index of the cepstral coeffi-
cients and NR_mel is the number of bands in the MEL fre-
quency range. For NR_cep a value of 12 is chosen and
NR_mel takes a value of 24 in our realization. |Xj| repre-
sents the value of the magnitude spectrum in the MEL
band with index k.

Then the power density spectra can be adapted in the
same way as the energy parameter

|Xk(5i)|2 = Ol |Xk(S,-)|2 + %1 |Xk(Si—l)|2
+ oo |Xk(Si—2)|2 + -

= ;- [X(S) for I <k<NRmel. (7)
j=1

The adapted spectra X have to be transformed to the
MFCCs again. In practice, mainly 2-3 preceding HMM
states have an influence on the current state. This depends
on the reverberation time and on the average durations of
the HMM states.

The variances are not adapted. It turned out in earlier
investigations (Gales, 1995; Hirsch, 2001a) that the modifi-
cation of the variances has only a minor influence on the
improvement of the recognition performance.

The effects of this adaptation approach are visualized in
Fig. 4 in the spectral domain by comparing the spectro-
grams as representations of different HMMs. Spectrograms
are shown in a three dimensional visualization mode.

The spectrogram of a HMM is estimated by transform-
ing the MFCCs back to the linear spectral domain for all
states. The transition probabilities p(S}|S;) to remain in a
state are taken to model the average duration of this state
as defined by Eq. (3). In Fig. 4 three spectrograms of differ-
ent HMM versions are shown for the word “six”’. Each
HMM consists of 16 states where a single state is described
by a set of cepstral coefficients including the zeroth cepstral
coefficient C0. The spectrum of an individual HMM state is
positioned with respect to its point in time g, in the middle
of the segment that is described by this state.

tSl- = idur(Sj) + _durz(—Sl) . (8)

Furthermore a Spline interpolation is applied to the
contour of the magnitude spectral values in each MEL
band.

{|Xk(t51)|’ |Xk(tsz)|7 |Xk(t53)" e }

Spling

EE{1X(0)], 1X£(10 ms)], [X (20 ms)] ...} 9)

Thus the spectrum can be recreated at a frame rate of
100 Hz as it is also defined by the window shift of 10 ms
in the feature extraction.
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Fig. 4. Different spectrograms of HMMs for the word “‘six”.

The spectrogram of the clean HMM is shown in graph
(a) of Fig. 4 as it has been trained with the utterances of
the TIDigits data base (Leonard, 1984). Only the utter-
ances containing a single digit have been taken for the
training. The contributions of the fricatives at the end
can be clearly seen in the high frequency region where
the formants of the vowel are visible in the middle of the
word.

The spectrogram in graph (b) represents the HMM that
has been trained on the TIDigits data after applying an
artificial reverberation to the training utterances. The
reverberation tails can be clearly seen when looking at
the contours in individual MEL bands.

The spectrogram in graph (c) of Fig. 4 represents the
HMM after adapting the clean HMM with the new
approach. A fixed value is chosen for the reverberation
time T60. The reverberation tails can also be seen in this
figure. Comparing it with the spectrogram trained on rever-
berated data, a lot of similarities are visible. This shows
that the new approach allows an adaptation of the static
parameters that is comparable with training the HMM
on data that have been recorded under reverberant
conditions.

In practice each HMM state tries to model a certain
speech segment with a mixture of Gaussian distributions
for each feature component. In this case the energy param-
eter at state S; and for the mixture component with the
index mix; is adapted by calculating

E(Si, le,) == OC,-J- . E(Sl', le]) + Oc,-.,-_l . F(Si—l)
+ i - E(Sia) 4 -+

i1
= O(iﬁ[ . E(S,,mlxj) —+ Z OC[A’/ . F(S/)

=1
for all S; with 1 < i < NR_states
and all mix; with 1 < j < NR.mix, (10)

where E(S,) is the average energy at state S, by weighting
the energies of the different mixture components with the
corresponding mixture weighting factors

NR _mix

E(S)) = Z w(mix;) - E(S,, mix;) with

w(mix;) = 1. (11)
>

J=1

NR_mix is the number of Gaussian distributions for mod-
eling this acoustic parameter in each individual HMM
state.

Thus, the influence of an earlier state is considered by
using the average energy at this earlier state.

In the same way the power density spectra of individual
mixture components are adapted by transforming back the
set of average cepstral coefficients to the spectral domain
first and adapting the subband energy in each Mel band
in the same way as the energy parameter.
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NR_mix
C, = Z w(mix;) - C,,(mix;) for 1 < m < NR_cep,
=1

HMMs is derived from the clean HMMs where the adapta-
tion can be restricted to the previously recognized HMM:s.
This newly adapted HMMs are used for another forced

(12) match and the search for the maximum likelihood. Because

{Co,C1,Ca,. .., Crrcep ) the hands-free conditions will usually alter only slowly in
IDCT - - o practical applications, the modification of T60 is restricted
- {log (|Xl|)a10g (|X2\)7 ..., log (|XNR_me1|>} to the range of +40 ms from the previous estimate. Thus
EXP {|)71|’ Xal,.... |)—(NR_md|}, (13) only a few matches are needed, so that the computational

i—1
X (S5, mix)[* = o - X5 (S5, mix) P+ ey [X(S).
=1

(14)

The adapted power density spectrum is transformed to
the cepstral domain again.

2.3. Estimation of T60

The estimated reverberation time T60 is the only param-
eter that is needed for the adaptation as it has been
described in the previous section. The recognition of an
utterance is done with a set of adapted HMMs where the
applied value of T60 has been estimated from the recogni-
tion of the previous utterance. T60 is estimated after the
recognition of an utterance by a search for this set of
adapted HMMs that leads to a maximum likelihood for
another forced recognition of the already recognized
sequence of HMMs. The restriction to the forced recogni-
tion of the already recognized HMM sequence is intro-
duced to limit the computational costs. This iterative
process is visualized in Fig. 5.

The sequence of buffered feature vectors is used to per-
form the match with the previously recognized HMM
sequence. At the beginning this match is performed with
adapted HMMs for the previous estimate of T60 and for
values of T60 that differ by +£20 ms. The values for the
probability, that the feature vectors match with the
sequence of adapted HMMs, are taken as input for the
search of this T60 value that leads to a maximum likeli-
hood. Dependent on the achieved probabilities the esti-
mated value of T60 is lowered or increased by another
20 ms or the search process is stopped in case the previous
estimate of T60 leads to the maximum likelihood. In case
the search process is continued, another set of adapted

costs are fairly low.

It turns out that the estimated value of T60 varies for
different speakers even though the hands-free condition is
the same. This seems to be dependent on the speaking rate.
Thus, this adaptation technique includes also a kind of
duration modeling to some extent.

2.4. Adaptation of delta parameters

Comparing the contours of the clean and the reverber-
ant HMM at individual Mel bins it becomes obvious that
also the Delta and Delta—Delta parameters as time deriva-
tives of the static parameters are modified by the influence
of the hands-free speech input. This can be seen for exam-
ple in Fig. 4 where a ““valley” is visible between the vowel
and the succeeding phoneme for the clean HMM. This
“valley” is filled by the reverberation tails for the reverber-
ant HMM versions. This indicates that also the time deriv-
atives will be different in this region.

The Delta parameters are calculated in the feature
extraction for the frame at time ¢#; as sum of weighted dif-
ferences between the static parameters of preceding and
succeeding frames (Young et al., 2005). For example the
calculation of the Delta logarithmic energy AlogkE(t;) is
done as

3,
AlogE(t;) = ijlj . [IOgE(ti+j) — IOgE(t[,j)}

norm
3
with norm =2-Y 7, (15)
j=1
where ...,t;_1,t;ti+1,... describe the window shift by
10 ms.

The Delta parameters of the reverberant speech are esti-
mated as described below by looking at the adapted static
parameters of all HMM states. The average logarithmic

Probability
Vector Forced match with / Maximum T60 Estimate
recognized HMM P likelihood » L » of T60
buffer Sequence search variation
Adaptation of
Adapted Cl
HMMs [S|  reconized [S===

Fig. 5. Estimation of T60 by an iterative search of the maximum likelihood.
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frame energies of all states are considered for a single
HMM. A Spline interpolation is applied to recreate the
average energy contour at a frame rate of 100 Hz.

{logE(ts,),log E(ts,),log E(ts,), . ..}
Selye — {logE(0),log E(10 ms), ..., logE(t,),...}. (16)

In the same way an interpolated version of the average
energy contour can be calculated for the average frame
energies of the clean HMM.

The procedure for calculating the Deltas in the feature
extraction, as described by Eq. (15), can be applied to the
interpolated energy contours of the clean and the adapted
HMM. Thus the average logarithmic Delta energies
Alog Egean(t;) and Alog Edddpted( ;) become available for
the clean and for the adapted HMM version at the frame
rate of 100 Hz (¢; = 0,10 ms,20 ms, . ..). As the number of
frames is equal for the clean and the adapted HMM of
an individual word class the difference between the clean
and the adapted Delta energies can be calculated

AIOgEdiff(t) AlogEdddpted( ) AlogEcledn( )
for all £; = 0,10 ms,20 ms, ... (17)

These values describe the average differences between
the Delta logarithmic energies of the adapted and the clean
HMM at each frame. By means of a Spline interpolation
the average differences are calculated for all HMM states.

{AIOgEdiff(O), AlogEdiff(lO IIlS)7 .

Splme

,AlogEdiff(tj), .. }

{A log Egirr (ts,), Alog Eirr (15, ), Alog Eirr (15, - }
(18)

A weighted version of these average differences is added
to the corresponding Delta parameters of the clean HMM
to create a set of adapted Delta parameters.

AlogE(tS,.,mixj) = Alog Eqean (s, mix;) + f - Alog Eqisr (7s,)
for all S; with 1 <7 < NR_states and all mix; with
1 < j < NR._mix. (19)

This is done individually for each state and for each mix-
ture component. A factor f is introduced for the weighted
summation of the differences. During recognition experi-
ments we found a value of 0.7 for  to achieve highest
performance.

The Delta cepstral parameters can be adapted in the
same way. The average logarithmic Mel spectral values
are taken as basis as they can be calculated by Eqgs. (12)
and (13) from the average cepstral coefficients for each
HMM state. A Spline interpolation can be applied to recre-
ate the contour of the logarithmic Mel magnitude in each
Mel band at the frame rate of 100 Hz.

{log |yk lsl)|,10g |)_(k(t53)|710g |)_(k(ls3)|, .. }

Spline — —

22 {log [X1(0)], log [X(10 ms)], ..., log [Xs(#)], ...}
for k=1,2,...,NR_mel. (20)
The logarithmic spectral domain seems to be the right

domain for applying the Spline interpolation even though
the interpolation could also be applied to the average

cepstral parameters. The interpolated average logarithmic
spectra are transformed to the cepstral domain

{log (1X(#;)]),1og (|X2(1:)]), - . ., Jog (| X nr_me (2:)]) }

gy = {Co(1;),Ci(t:), - .. (t)} for ;=0,10ms,...
(21)

) CNR_cep

The Delta coefficients can be calculated for the contour
of each individual average cepstral coefficient. This can be
done again for the clean as well as for the adapted HMM
so that the difference between these two versions can be
estimated

AC’ndlff( ) ACm \ddpted( ) Acmdeun (ti)
for all £, = 0,10 ms,20 ms, ...

and for 1 < m < NR _cep. (22)

These values describe the average differences between
the Delta cepstral coefficients of the adapted and the clean
HMM at each frame. By means of a Spline interpolation
the average differences are calculated individually for each
cepstral coefficient for all HMM states

{Acmdlff )’ AE’”diﬂ'(lo ms) Acmdlff( ) : }
Spline —
= {Acmdm tSl) Acmdn‘(tsz)7 AC,,,dm;(t&), e }
for 1 < m < NR_cep. (23)

The adapted cepstral coefficients can be calculated by
adding a weighted version of the average differences to
the Delta coefficients of the clean HMM

Aém (S,-,min) = Acmc]can (S,,le,) + ﬁ Acmdm( )
for all S; with 1 < i < NR_states
and all mix; with 1 < j < NR_mix

and for 1 < m < NR_cep. (24)

The adaptation of each cepstral coefficient is done indi-
vidually for each state and for each mixture component.
The value of f§ is the same as applied in Eq. (19) for the
energy.

Fig. 6 summarizes and visualizes this new technique for
calculating the differences between the Delta coefficients
that can be derived from the static parameters of the clean
and the adapted HMMs. It is not only applicable in case of
adapting HMMs to the conditions of a hands-free speech
input. This method can be applied in any case of adapting
the static parameters of HMMSs to the influence of distor-
tion effects.

The Delta-Delta parameters can be adapted in the same
way as the Delta parameters. The Delta—Delta parameters



H.-G. Hirsch, H. Finster | Speech Communication 50 (2008) 244-263 251

Clean average logarithmic spectra ‘

Adapted average logarithmic spectra

|
T
1/450%

0

Interpolated spectra
frame rate = 100 Hz

20
U
&/,'/

=z 2000 o
z
1000 e

“yms 600 "0 -

Apply DCT

Clean cepstra

Calculate Deltas

’ Clean Delta cepstra ‘

Apply DCT

Adapted cepstra

Calculate Deltas

’ Adapted Delta cepstra ‘

Average difference between Delta cepstra of clean and adapted HMMs

Fig. 6. Scheme for estimating the differences between the Delta parameters of clean and adapted HMMs.

are calculated from the Delta parameters in the same way
the Delta parameters are determined from the static
parameters. Looking at Eq. (15) the only difference is a
value of 2 for the higher summation index. This results in
a calculation of the Delta—Delta parameters over five sets
of Delta parameters. Otherwise the adaptation of the
Delta—Delta parameters is done as described by Eqgs.
(16)—(24).

2.5. Restrictions in case of a connected word recognition

The complete adaptation scheme as described above
works well for whole word HMMs in case of an isolated
word recognition. For the recognition of connected words
the adaptation will not be perfect when uttering a sequence
of words without even short pauses between the words. The
beginning of a word is modified by the reverberation tail of
the acoustic excitation at the ending of the preceding word.
These effects can be taken into account only in a type of
online adaptation. To get knowledge about the preceding
word, the log likelihood is observed at the final states of
all HMMs during the frame-wise recognition with the
Viterbi algorithm. The adaptation of the first frames of
all HMMs can be done when a high log likelihood is com-
puted for the final states of a HMM so that is very likely
that the corresponding word was spoken. Thus the energy
and spectral parameters, that are contained in the final

states of the HMM with the high likelihood, can be used
to adapt the first states of all HMMs.

The implementation of this online technique is quite
complex because it is based on a frame-wise decision pro-
cess whether and which HMM creates a high likelihood
at its final states. The authors implemented this approach
but could find only small improvements for a connected
digit recognition with respect to word accuracy. Also
because of the high computational effort the approach
was not investigated further.

2.6. Adaptation of triphone HM Ms

Most often triphone HMMs are used in case of a pho-
neme based recognition which is used for the recognition
of large vocabularies. A triphone HMM is applied to
model the acoustic characteristics of a phoneme in the
context of a specified preceding and a specified succeeding
phoneme. Thinking about the adaptation of this triphone
HMM, the knowledge about the preceding phoneme and
the succeeding phoneme can be taken to apply the adapta-
tion approach as it was presented for the application to
whole word HMMSs in the previous sections. Looking at
a single triphone HMM as it is done for the triphone
“s-I-k” in Fig. 7, the number of possible preceding and
succeeding triphone HMMs is restricted.

The triphone HMM “s-1-k” for the vowel “i” in the

context of a preceding “s” and a succeeding “k” will be
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Fig. 7. Possible preceding and succeeding triphone HMMs for one selected triphone HMM.

preceded by a triphone HMM “unknown-s-I"" for the fric-

ative “s” with the vowel “i” following. Only the preceding
phoneme of ““s” is not defined. In the same way a triphone
HMM “I-k-unknown” for the “k” will succeed the

triphone HMM for the “i”. This knowledge about the
sequence of HMMs and hence also about the complete
sequence of states enables the applicability of the new
approach for the adaptation to reverberation. Looking at
the sequence of three triphones as shown in Fig. 7, the
complete sequence of nine HMM states for all three
models is used for the adaptation. It is done in the same
way as it has been described for the whole-word HMMs
before.

Thus, the problem of being unable to adapt the first
states of a whole word HMM, does not exist in case of tri-
phone models where a certain knowledge about the preced-
ing model is available.

This preceding model ““‘unknown-s-I"" is chosen from all
available triphone HMMs by looking at the spectral simi-
larity between the last state of each triphone HMM
“unknown-s-I"’ and the first state of the HMM “s-I-k”.
The spectral similarity is estimated by calculating the
Euclidean distance between the average cepstral coefficients
of the first state of “s-I-k” and the corresponding coeffi-
cients of the last state of the preceding phoneme. The tri-
phone HMM with the smallest spectral distance is selected

NR _cep

Z [Caf{S1(“s-1-k7)}

—Cou{Sias(“unknown-s-1")}]*. (25)

MIN

unknownée{all phonemes}

In case of modeling with a mixture of Gaussian distribu-
tions the average cepstral coefficients are calculated by
taking into account the mixture weights

NR _mix
C”l -
=1

w(mix;) - C,(mix;) for m=1,2,..., NR_cep.
(26)

In the same way the preceding triphone is chosen by
comparing the last state of “s-I-k” with the first state of
all triphones “I-k-unknown”

NR _cep

Z Fm {Slast ( “s-I-k” ) }

—C,{S1(“I-k-unknown” )} g (27)

MIN

unknowne{all phonemes}

The static and the Delta parameters are adapted for the
states of the HMM “‘s-1-k” by looking at the whole state
sequence of all three consecutive triphone HMMs and
applying the adaptation technique as described for the
whole-word HMMs. By transforming back the nine sets
of cepstral coefficients to the spectral domain and applying
a Spline interpolation the spectrogram for the complete
segment of the three triphones is available. The knowledge
of the preceding phoneme has the advantage that the
energy and spectral information of these states can be used
to adapt the succeeding states of the HMM “‘s-I-k” with
respect to reverberation. Hence, the drawback of not
knowing the preceding HMM for the adaptation of the first
states does not exist as it occurs in case of whole-word
HMMs. The knowledge of the succeeding triphone is only
used for the better estimation of the adapted Delta
parameters.

This adaptation technique can be applied to all triphone
HMMs that are used for the recognition. In case of using
state tying a further tying can be applied after the adapta-
tion. This has not been investigated here. The authors only
intended to demonstrate the principal applicability of the
new adaptation method to the modeling with triphone
HMMs.

3. Recognition experiments on hands-free speech input

Recognition experiments have been run to proof the
applicability of the new adaptation approach and to quan-
tify the improvements that can be achieved.

Some details about the applied feature extraction and
the recognition are presented at the beginning of this chap-
ter. After this the results are shown for a series of experi-
ments with the intention to demonstrate the applicability
to a word recognition based on whole word HMMs.
Finally the improvements are presented separately for the
recognition of a large vocabulary based on the use of tri-
phone HMMs.

3.1. Feature extraction

The acoustic features are extracted from the speech sig-
nal by a cepstral analysis scheme that is similar to many
realizations in this field. A pre-emphasis is applied to the
speech signal by means of a first order FIR filter where
the value of the preceding sample is weighted by a factor
of 0.95 before subtracting it from the value of each sample.
Short segments of speech are extracted with a 25 ms
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Hamming window. The window is shifted by 10 ms which
corresponds to a frame rate of 100 Hz. Each speech frame
is transformed to the spectral domain by means of a 256
point DFT (Discrete Fourier Transform). The so called
MEL spectrum is estimated by weighting the values of
the DFT magnitude spectrum with triangular shaped func-
tions and summing up the spectral magnitudes for each tri-
angular. Thus, a MEL spectrum is computed for 24
nonlinearly distributed frequency bands in the range from
200 Hz up to 4000 Hz. The 24 logarithmic MEL spectral
values are transformed to the cepstral domain by means
of a DCT (Discrete Cosine Transform). Thirteen cepstral
coeflicients CO to C12 are calculated. Thus, CO is available
as acoustic parameter in each state of all HMMs. C0 is only
needed to transform back the cepstral coefficients to the
spectral domain as part of the adaptation process. But
CO0 is not used for the recognition. Instead of C0O an energy
parameter is estimated from the preemphasised and Ham-
ming weighted speech samples. A preemphasis factor of —1
is applied here which leads to a slightly higher attenuation
of the low frequency components. This is of advantage in
the presence of background noise with its main energy at
low frequencies. The short-term energy is calculated by
summing up the squared values of all samples in each
25 ms frame.

The described analysis technique is applied to speech
data sampled at 8 kHz. In case of data sampled at
16 kHz the same MEL filterbank is applied in the fre-
quency range up to 4000 Hz. All filter characteristics like
e.g. the preemphasis filtering or the MEL filters and all
other individual settings like e.g. the frame length or the
FFT length are chosen in an appropriate way so that the
final cepstral coefficients are almost identical to the coeffi-
cients which result from an analysis of the same utterance
sampled at 8 kHz. This approach has been investigated in
earlier work (Hirsch et al., 2001b). It allows for example
the recognition of speech data sampled at 8 kHz
with HMMs that have been trained on data sampled at
16 kHz.

Besides the 13 cepstral coefficients and the energy
parameter in the range up to 4 kHz two further parameters
are calculated in case of data sampled at 16 kHz. These are
two energy parameters that describe the energy in the fre-
quency range from 4 to 5.5 kHz respectively in the range
from 5.5 to 8 kHz. This is realized by summing up the cor-
responding components of the FFT power density spec-
trum. These additional coefficients can help to increase
the recognition performance a bit in comparison to the case
of recognizing data sampled at 8 kHz.

Twelve cepstral coefficients C1-C12 and the logarithm
of the energy parameter are used as acoustic parameters
for the recognition. Furthermore Delta and Delta—Delta
coefficients are added as additional features where the
Delta parameters are calculated as described by Eq. (15).
The Delta calculation corresponds to the way of estimating
Delta parameters in the HTK software package (Young
et al., 2005).

Thus, finally a feature vector consists of 39 components
in case of speech data sampled at 8 kHz and it consists of
45 components in case of data sampled at 16 kHz.

The parameters of the HMMs are determined by apply-
ing the available training tools of the HTK software pack-
age. The recognition is done either with an own C
implementation of a Viterbi recognizer or with the corre-
sponding tool of the HTK package. It has been verified that
the own implementation leads to the same recognition
results as the HTK recognizer. Furthermore the Viterbi rec-
ognizer has also been implemented as Matlab module. This
was helpful during the development process of the adapta-
tion algorithms due to the easier software development with
Matlab and its graphical visualization properties.

The adaptation techniques have been implemented as
Matlab and as C modules. The adaptation is individually
applied to each speech utterance when detecting the begin-
ning of speech. The applied voice activity detector takes the
MEL magnitude spectrum as input. It will be described a
bit more in detail later. The C modules for the analysis
and the recognition are designed for an application in a
real-time recognition and dialogue system (Hirsch, 1999).
This means that the Viterbi match can be started and run
in parallel to the feature extraction after the detection of
speech. Techniques like a cepstral mean normalization on
the whole utterance are not considered here because they
would delay the beginning of the Viterbi match till the
detection of the end of speech.

3.2. Recognition with whole-word HM M

The TIDigits data base is taken as basis for the experi-
ments on isolated and connected word recognition. A ver-
sion of the TIDigits is used that has been downsampled at
8 kHz. All utterances from the adult speakers designated
for training are taken to determine two gender dependent
HMMs for each word. Each HMM consists of 16 states
where each state is described by the mixture of two Gauss-
ian distributions for each of the 39 acoustic features. A sin-
gle state HMM with a mixture of eight Gaussians is used
for modeling the pauses. The HMMs are defined as left-
to-right models without skips over states. The recognizer
is set up to recognize any sequence of digits with the restric-
tion that a sequence contains only models from the same
gender.

3.2.1. Recognition of single digits

A first series of experiments focused on these test utter-
ances that contain only a single digit. These are about 2500
utterances in total. This is done to avoid the inter-word
effects between fluently spoken words without pauses
between the words. As already mentioned before, the rever-
beration will influence the beginning of a word by the end-
ing of the preceding word.

The word error rates are shown in Fig. 8 where the
recognition of connected words is still enabled so that also
insertion errors can occur. Results are presented for three
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Fig. 8. Word error rates for these TIDigits utterances that contain only
single digits.

different conditions. Besides the clean data the TIDigits
have been processed with a tool for simulating the influence
of a hands-free speech input (Hirsch and Finster, 2005).
This tool creates fairly natural sounding reverberation. A
Web interface exists to experience this tool (Finster,
2005). Test data have been created for the simulation of
two different rooms, an office room with a reverberation
time of about 0.4 s and a living room with a reverberation
time of about 0.6 s. As expected the error rates are higher
for the longer reverberation time.

For each condition four different processing methods
are compared. The first one is based on the advanced
front-end as it has been standardized by ETSI (2003).
Robust acoustic features are extracted with this front-
end. The term robustness refers to the presence of back-
ground noise and unknown frequency characteristics. This
is realized by extending a cepstral analysis scheme by two
further processing steps. The first one contains a Wiener fil-
tering based on an estimation of the noise spectrum to
reduce the influence of stationary background noise. A
blind estimation and equalization of unknown frequency
characteristics has been integrated as second processing
block. Each feature vector consists of 39 parameters. These
are 12 Mel frequency cepstral coefficients and an energy
parameter as well as the corresponding Delta and Delta—
Delta parameters. Feature vectors are computed at a rate
of 100 Hz. This front-end is considered as a representative
for a robust feature extraction and is taken as reference for
comparing the results with the HMM adaptation.

The cepstral analysis scheme as it has been described in
the previous section is investigated as second method.
Word error rates are presented for the three cases where
the recognition is done

— without any adaptation or

— with adaptation of the static parameters only or

— with adaptation of the static and the Delta and Delta—
Delta parameters.

The error rates for the clean data are in the range of 0.4—
0.5%. It can be seen that the influence of the reverberation
leads to a considerable deterioration of the recognition
rates for both feature extraction schemes. The high error
rate of the cepstral analysis scheme in comparison to the
ETSI front-end in case of the living room condition is
due to a high number of insertion errors. The number of
substitutions is even lower for the cepstral analysis scheme
in comparison to the ETSI scheme.

Error rates can be reduced by applying the adaptation
methods. Adapting also the Delta and Delta—Delta param-
eters leads to an additional gain in both reverberant
situations.

The efficiency of the adaptation scheme is investigated
by comparing the obtained results to the case of training
the HMMs on reverberated data. Therefore a set of HMMs
is trained with all TIDigits training utterances after apply-
ing the simulation of a reverberation in the living room.

Results are listed in the first two lines of Table 1 for the
cases without adaptation and with adaptation of the static
and Delta parameters and taking HMMs trained on clean
data only. These are the error rates as already shown in
Fig. 8. The third line of Table 1 contains the error rates
for the case of applying the HMMs trained on reverberated
data and without any adaptation.

The error rate decreases from about 7% to 1.7% for the
living room condition when moving from the training on
clean data and applying no adaptation to the training on
reverberant data. Applying the adaptation scheme to the
clean HMMs leads to an error rate quite close to the case
of training on reverberated data. This can be taken as fur-
ther proof for the usefulness of the applied adaptation
method.

The drawback of training the HMMs on reverberant
data is a considerable increase of the error rate to about
11% for the recognition of clean data. This indicates that
the training has to be done on a mixture of conditions
for a practical application. And this can only be done if
the whole range of conditions is known in advance.

3.2.2. Connected word recognition

The word error rates are shown in Fig. 9 for the recog-
nition of all TIDigits utterances that have been designated
for recognition. These are 8700 utterances containing
about 28000 digits in total. The results are presented for

Table 1
Word error rates for the recognition of single TIDigits applying the
cepstral analysis

Condition
Clean Office room  Living room
(() 0) ((J 0) (() 0)
Without adaptation 0.44 3.49 6.94
Adaptation to reverberation &  0.44 1.57 2.05
Deltas
HMMs trained on living room  10.98 1.93 1.73
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g. 9. Word error rates for the recognition of all TIDigits.

the four conditions that have also been shown in the previ-
ous figure.

First of all the error rates for the robust ETSI front-end
are higher in comparison to applying the cepstral analysis
scheme without any adaptation. For the condition of a
hands-free speech input in reverberant environments it
looks like the ETSI front-end does not work as efficient
as it does in the presence of background noise.

The application of the adaptation method leads also to a
reduction of the error rates for the case of recognizing
sequences of connected words. The relative improvement
is not as high as in case of recognizing single digits. The
authors mainly regard the superposition effect at the begin-
ning of words as responsible for this. The acoustic informa-
tion at the beginning of a word is modified by the acoustic
information of the preceding word due to the reverbera-
tion. These “inter-word” modifications occur especially
when sequences of words are spoken fluently with coartic-
ulation effects. In general the speaking rate considerably
varies between speakers when uttering a sequence of digits.
This effect can only be approximately covered by modeling
with HMMs with multiple mixture components. Analyzing
the errors a bit more in detail, it turns out that about half
of the errors are due to deletions in case of recognizing the
living room data with adaptation. It seems to be difficult to
recognize especially the “fast” speakers which create these
co-articulation effects. The “inter-word’” modifications are
not compensated by this adaptation technique.

We observe again that the additional adaptation of the
Delta and Delta—Delta parameters causes a further gain
in recognition performance.

Further recognition results are presented in Fig. 10 for
varying the reverberation time in the living room condi-
tion. The tool for simulating the hands-free speech input
in noisy environments allows the variation of the reverber-
ation time in a certain range. The RIR for the living room
simulation is modified inside the tool so that it reflects the
desired reverberation time.

Recognition of TIDigits
40 T T
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word error rate/%
»
-
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reverberation time/s

Fig. 10. Word error rates for a variation of the reverberation time in the
living room.

As expected the error rate increases for higher reverber-
ation time. The error rates for a reverberation time of 0.6 s
are the ones shown in the previous figure. Again the recog-
nition performance is slightly worse for applying the robust
ETSI front-end in comparison to the cepstral analysis
scheme. The improvement due to the adaptation is visible
over the whole range of the reverberation time.

3.3. Recognition with triphone HM Ms

Triphone HMMs are used for the recognition of a large
vocabulary. The “Wall Street Journal” data base (WSJ0)
(LDC, 1993) is taken as basis for these investigations as
it has also been used for the evaluations inside the ETSI
working group Aurora (Picone et al., 2004). Approxi-
mately 7200 utterances that have been recorded at a sam-
pling rate of 16 kHz with a high quality microphone are
taken for the training of triphone models. The triphones
are modeled as HMMs with three states where each acous-
tic parameter of each state is described by a mixture of 4
Gaussian distributions. Training and recognition are done
with HTK as it has been defined in (Au Yeung and Siu,
2004). The training procedure includes state tying to model
the triphones with a total of about 3200 different states.
The recognition is based on the usage of a dictionary con-
taining the phoneme description of about 5000 words. The
possible sequences of words are defined by a “bigram™
model. The recognition process is speeded up by a state
based pruning.

The cepstral analysis scheme is applied as it has been
described before for data sampled at 16 kHz. We achieve
a word error rate of 11.21% for the recognition of the
330 clean utterances that have been designated for testing.
The word error rate can be reduced by applying HMMs
that model acoustic parameters with a higher number of
distributions. Because of the high computational costs,
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Table 2
Word error rates for the recognition of the “Wall Street Journal” large
vocabulary

Clean

11.2%

Office without adaptation
48.8%

Office with fixed adaptation
39.8%

only experiments have been run with HMMs modeling
with a mixture of four distributions.

All 330 test utterances have been processed with the sim-
ulation tool to investigate the recording in an office room
with a reverberation time of about 0.4 s. The word error
rates for recognizing these data are listed in Table 2.

The word error rate increases considerably to a value of
48.8% in the hands-free mode.

The adaptation of the triphone HMMs is applied as
described before. As the own implementation of the Viterbi
recognizer does not support the use of complex language
models, HTK is employed for the recognition. Thus, the
estimation of the reverberation time T60 as well as the indi-
vidual adaptation for each utterance is not applicable. The
whole set of triphone HMMs is adapted once at the begin-
ning with a fixed value for the estimated reverberation time
T60 instead. The adaptation is implemented as Matlab
functions. The intention of the authors is only the proof
that the new adaptation approach can be applied to tri-
phone HMMs in principal. The word error rate decreases
by about 10% when applying the set of adapted triphone
HMMs.

4. Combined adaptation to different distortion effects

The hands-free speech input in a room comes along with
the recording of background noise as it is present in almost
all applications of speech recognition systems. Further-
more the spectrum of the speech is modified by the
frequency characteristics of the microphone and of an
additional transmission channel, e.g. in case of transmitting
the speech via telephone to a remote recognition system.
This creates the need to compensate also these distortion
effects.

In earlier work (Hirsch, 2001a) the authors developed an
adaptation scheme based on the well-known PMC (parallel
model combination) approach. This scheme consists of an
adaptation of the static Mel frequency cepstral coefficients.
The cepstral coefficients are transformed back to the Mel
spectral domain where the adaptation can be realized by
a multiplication with a frequency weighting function as
estimate for the frequency characteristics and by adding
the estimated noise spectrum. The cepstral coefficients of
all HMMs are individually adapted for each speech utter-
ance when the beginning of speech is detected. Further-
more the energy parameter can be adapted with an
estimate of the noise energy.

We present a short overview about the techniques for
estimating the spectrum of the background noise and the

frequency weighting function in the next section. Having
these estimates as well as an estimation of T60, it will be
shown that the earlier adaptation approach (Hirsch,
2001a) can be combined with the new method of adapting
the spectra to a hands-free speech input.

4.1. Estimation of distortion parameters

The spectrum of the background noise is estimated by
looking at a smoothed version of the Mel magnitude spec-
trum as it is calculated in the feature extraction. The con-
tour of the spectral magnitude values is smoothed in each
Mel subband by applying a first order recursive filtering

Xsmooth(t;) = (1 — a) - |Xix(8;)| + o - Xsmooth;(¢;_)
for 1 <k < NR_mel and #; = 0,10 ms,20 ms, . .. (28)

where Xi(z;) is the Mel spectrum of the analysis frame at
time ¢; as calculated in the feature extraction.

A VAD (voice activity detector) is applied that takes the
Mel spectra as input. A speech onset is detected when the
estimated signal-to-noise ratios exceed an adaptive thresh-
old in several subbands for a certain number of frames. The
VAD was developed for earlier investigations. More details
can be found in (Hirsch and Ehrlicher, 1995; Hirsch,
2001a).

When the beginning of speech is detected the estimated
noise spectrum is set to the smoothed spectrum of the last
analysis frame that is marked as pause frame

for 1 <k < NR_mel.
(29)

N, = Xsmooth(last pause frame)

Furthermore the energy of the noise is estimated as
energy of the last pause frame

Enoise = Ei(last pause frame), (30)

where Ei(¢;) is the energy of the analysis frame at time ¢; as
calculated in the feature extraction.

The detection of speech begin is also taken as trigger
point to perform the adaptation of all HMMs. For the sim-
ulation experiments we take the acoustic parameters of all
frames from a recorded utterance as input for the Viterbi
recognition. For the real-time version of the recognizer as
it is applied in a speech dialogue system, we start the recog-
nition process five frames earlier than the first frame
detected as speech. Thus, the Viterbi calculation can be
run almost in parallel with the feature extraction.

The frequency weighting function is estimated after the
recognition of an utterance. It is applied for the recognition
of the next utterance. This is based on the assumption that
the frequency characteristics of the whole speech transmis-
sion will not change rapidly. Usually the microphone and
the other transmission conditions do not change during a
recognition session. The weighting function is estimated
by comparing the long-term spectra of the noisy input
speech and of the clean speech. The “best” sequence of
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HMM states is considered as it is available after the Viterbi
match by backtracking the path with the highest likeli-
hood. The long-term spectrum of the noisy input speech
is calculated for all analysis frames that are mapped on
speech HMMs excluding the frames that are mapped on
the pause model

Xlong, = |Xi (1)

1
NR speech ' Z

speech frames
for #; € {feature vectors mapped on speech HMMs},
(31)

where NR_speech is the total number of vectors mapped
on speech HMMs.

In a similar way the long-term spectrum of the clean
speech is estimated by looking at the spectral information
contained in the HMM states at the path with highest like-
lihood. A set of adapted HMMs is used for the recognition.
But for the estimation of the clean spectrum the spectral
information is extracted from the corresponding clean
HMMs. The cepstral coefficients of the corresponding
clean HMM states are transformed back to the Mel spec-
tral domain. In case of HMMs with multiple mixture com-
ponents, the spectrum of this mixture component with the
smallest spectral distance to the corresponding spectrum of
the input signal is taken. Therefore, the estimated noise
spectrum is subtracted from the spectrum of the input sig-
nal to compare it with the spectrum contained in a clean
HMM. The spectral similarity is calculated as City block
distance. So, the long-term spectrum of the clean speech
can be estimated

1
NR _speech
> Ixi[Mclean(t;),S(t),mix(t;)]| — [Nsil,|

speech frames

Slong, =

for ¢; € {feature vectors mapped on speech HMMs}
(32)

with Mclean(¢;) and S(#,) as recognized model and state on
the best path and mix(¢;) as mixture component with small-
est spectral distance.

Nisil is the Mel spectrum that can be derived from the
single state pause model. Calculating the average cepstral
values of the pause state according to Eq. (12), the spec-
trum can be determined by transforming the cepstral values
to the spectral domain (Eq. (13)). The pause model con-
tains the spectral information of the background noise that
was present during the recording of the training data. In
case of “clean” training data, Nsi/ takes only small values.
It is subtracted here to compensate its presence in the spec-
tral parameters of all HMMs. In the rare case of getting a
negative value after the subtraction the result is set to a
fixed small positive value.

Subtracting the estimated noise spectrum from the long-
term spectrum of the noisy input speech, the frequency
weighting function can be estimated

_ Xlong, — Ny

W, = for I <k < NR_mel. 33
A Slong, or me (33)

It turned out in earlier investigations that this type of
estimating the spectral difference between the input signal
and the clean HMMs works well. Because of comparing
the spectral information from the input signal and the clean
HMMs, the weighting function does not only contain the
spectral characteristics of the recording equipment and
the transmission line but also the frequency characteristics
of the individual speaker to some extent.

In the same way the difference between the energy con-
tours of the input speech and the best HMM sequence can
be calculated. The energy values of the input signal are
accumulated for those frames mapped on speech HMMs

1
NR speech Z i(t:)

speech frames

Einput =

for ¢; € {feature vectors mapped on speech HMMs}.
(34)

The energy parameters contained in the clean HMMs on
the best path are accumulated as estimate for the clean
energy. Models, states and mixture components are
selected as described before (Eq. (32))

1

NR speech

> |E[Mdlean(),S(4),mix(t;)]| — |Esil|

speech frames

Eclean =

for ¢#; € {feature vectors mapped on speech HMMs}.
(35)

The average energy Esil of the single state pause model
is subtracted to compensate the presence of background
noise in the training data.

A weighting factor can be calculated that describes the
average energy difference between the input signal and
the energies contained in the sequence of HMM states on
the best path

_ Einput — Enoise (36)

Eclean

This factor contains information about the loudness of

the individual speaker.

4.2. Combined adaptation

Having estimates for the noise spectrum, the frequency
weighting function and the reverberation time, the Mel
spectra of the clean HMMs are adapted as shown in
Fig. 11.

The cepstral coefficients of each state and mixture com-
ponent are transformed back to the linear Mel spectrum
for all clean HMMs. The Mel spectra are adapted to the
estimated reverberation condition as described by Eq.
(14). The estimated weighting function and the estimated
noise spectrum are applied for the further adaptation
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Fig. 12. Spectrograms of the clean and the adapted HMMs for the word “six”’.

)?k(S,-,mix‘,-) =W, -)?k(S,-,mixj) +N; for 1 <k <NR.mel.
(37)

The adapted Mel spectra are transformed to the cepstral
domain again.

In the same way the energy parameter that has been
adapted to the reverberation as stated in Eq. (10), is used
as input for the further adaptation

E (S, mix;) = we - E(S;, mix;) + Enoise. (38)

The adaptation to reverberation and noise is visualized
by the spectrograms in Fig. 12. The spectrogram is shown
in graph (a) as it can be calculated from the HMM of the
word six trained on clean data. In graph (b) the adapted
version of this HMM is visualized. The adapted HMM
has been extracted during the recognition of artificially dis-
torted TIDigits data. These data have been created from a
simulation of the hands-free recording in a noisy living
room environment. The noise spectrum as it is estimated
for the individual input utterance, becomes visible as shift
of the complete spectrogram. The reverberation tails can
also be seen when looking at the contours along time in
individual subbands.

5. Recognition experiments on hands-free speech input in
noisy environments

Again the recognition of connected digits is employed to
proof the applicability of the combined adaptation to sev-
eral distortion effects. A data base called Aurora-2 (Hirsch
and Pearce, 2000) exists that consists of noisy versions of
the TIDigits. Noise signals have been artificially added at
different SNRs. Furthermore a few test sets exist where
the frequency characteristics have been modified to simu-
late the recording with audio devices in the telecommunica-
tion area. But Aurora-2 does not cover the effect of a
hands-free speech input in noisy environments.

Thus new sets of distorted versions have been artificially
created from the clean TIDigits by applying the already
mentioned simulation tool (Finster, 2005). To make these
data available for the research community, they have been
put together as data base and have been combined with
HTK based recognition experiments. They will become
available under the title Aurora-5 (Aurora, 2006).

A few details about the new data base will be listed in
the next section before presenting the recognition results
for these data. Finally results will be shown for the recog-
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nition of data that have been recorded in a reverberant
meeting room in hands-free mode.

5.1. Distorted data of the Aurora-5 experiment

The new data base focuses on two application scenarios
for speech recognition. The first one is the application
inside the noisy interior of a car, the second one the
hands-free speech input in an office or a living room, to
control e.g. electronic devices like a telephone or audio/
video equipment. In comparison to Aurora-2 where only
1000 utterances were selected, each test set contains all
8700 utterances here.

The usage of telephone like devices is assumed in general
for the car scenario by filtering all data with a G.712 fre-
quency characteristic first (Campos-Neto, 1999). G.712 is
a characteristic that attenuates all frequency components
outside the range from about 300 to 3400 Hz. Car noise is
added to the filtered data at different SNRs in the range
from 0 to 15 dB. The noise segment for distorting a single
utterance is randomly selected out of eight recordings that
were made in different cars and under different conditions
like e.g. windows open or closed. Three different versions
exist for the car noise condition. The first version contains
additive noise only according to the recording with a close
talking microphone. The second one considers the record-
ing with a hands-free microphone. The third version is like
the second one but containing a further transmission over a
GSM cellular telephone network. This reflects the usage of
an information retrieval system located at a remote position
in the telephone network. The GSM transmission is simu-
lated by randomly selecting an AMR (adaptive multi-rate)
speech coding mode and the channel conditions of the cel-
lular channel. These options exist as part of the simulation
tool. In total 15 test sets exist for the five different SNR con-
ditions including the clean case and the three versions.

For the second scenario randomly selected noise seg-
ments are added from five recordings inside different rooms
like e.g. an office room or a restaurant. The same range of
SNRs is considered. Three different versions exist. The first
one looks at additive noise only simulating the recording
with a close talking microphone. The second one considers
the recording in an office room where the reverberation time
is randomly varied in the range from 0.3 to 0.4 s. In the third
version the recording in a living room is simulated where the
reverberation time randomly varies in the range from 0.5 to
0.6 s. This comes up again to 15 test sets in total.

In general the Aurora-5 data contain a bigger variance
of the distortion conditions inside each test set in compar-
ison to Aurora-2. For example only a single noise record-
ing has been taken for Aurora-2 to create one test set.

5.2. Recognition of artificially distorted digits
Cepstral parameters are extracted again as acoustic

features, as described and applied before for the experi-
ments with reverberation as the single distortion effect.

Also the same gender dependent HMMs are used that
have been created with a training on the clean TIDigits.
The word error rates are presented in Fig. 13 for the three
different versions containing car noise.

Looking at the condition with additive noise only,
shown in graph (a), the expected improvement can be seen
when comparing the results for the robust ETSI front-end
against the results for a cepstral analysis. Further small
improvements are achieved when adapting the HMMs to
all distortion effects as described in the previous chapter.
Furthermore the error rates are shown for the unsupervised
HMM adaptation with MLLR as it is available as part of
the HTK Viterbi recognizer. An incremental MLLR is per-
formed after each utterance. We observed a worse recogni-
tion performance when applying MLLR every two or more
utterances. The adaptation is performed on the HMMs
containing the features of the cepstral analysis so that the
results can be immediately compared to the new adaptation
approach. The error rates for MLLR are only a little bit
worse in this case.

The improvement, comparing the new adaptation
approach against the ETSI front-end, is higher when look-
ing at the condition of a hands-free speech input in the
noisy car environment. This is shown in the graph (b).
The reverberation time is fairly small in a car in compari-
son to rooms. The major impact of the hands-free record-
ing inside a car is a modification of the frequency
characteristics. The adaptation seems to compensate these
effects to a higher extent than the robust feature extraction
except for the low SNR of 0 dB. The error rates for MLLR
are again slightly worse.

The adaptation scheme shows its usability also for the
case of an additional transmission over the GSM cellular
network as shown by the results in graph (c). In this case
the speech is further modified by the encoding and decod-
ing and the transmission errors on the cellular channel. The
adaptation technique seems to cover this type of distortion
considerably better than the robust ETSI front-end. The
performance of MLLR is extremely low for the SNR of
0 dB. This has been observed in several experiments where
the performance without adaptation was already quite low.
MLLR seems to be unable to find the right feature map-
ping in such cases and seems to adapt the features in the
wrong direction.

The cases with car noise do not include the major effects
of a hands-free speech input in a reverberant room environ-
ment. The word error rates presented in Fig. 14 do include
such effects. These experiments investigate recordings of
speech inside a noisy room environment.

In the case of additive noise only, shown in graph (a),
the new adaptation scheme leads to similar error rates like
the robust front-end. In general the recognition perfor-
mance is lower in comparison to the case with car noise
because the interior noise signals contain more non station-
ary segments.

A considerable improvement is observed when compar-
ing the new adaptation technique against the robust
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Fig. 13. Word error rates for different recording conditions inside a car.

front-end for the cases of a hands-free speech input in an
office or a living room as shown in graphs (b) and (c).
The additional adaptation to reverberation causes this
improve- ment.

MLLR adaptation leads to worse results especially for
SNRs below 15 dB. It looks like the mapping on the basis
of a linear regression is not able to completely compensate
the sum of spectral modifications caused by background
noise and reverberation. While additive noise and a fre-
quency weighting can be modeled as a stationary modifica-
tion of each frame, reverberation includes modifications
along the time axis. In sum this can not be completely com-
pensated with a linear mapping. As already observed for
the car noise conditions, MLLR seems to adapt into the
wrong direction in case we obtain a low performance with-
out adaptation.

5.3. Recognition of digits recorded in application scenarios

All results presented so far have been derived from a rec-
ognition of artificially distorted speech data. The authors

believe that their simulation of recording conditions repre-
sents the situation of applying a recognition system in a
real scenario quite well.

Thus the improvements on artificially distorted data
should also be visible in real application scenarios. This
is proofed by recognizing speech data that have been
recorded in different situations.

The first experiment is run on the so called Bellcore dig-
its. These are speech data that have been recorded over
telephone lines. There exist the recordings of 220 American
speakers that have spoken the 10 English digits as isolated
words. The recordings contain the usual distortions that
occur in case of transmitting speech over the telephone.
This includes the usage of telephone devices with different
frequency characteristics and the presence of some back-
ground noise. Word error rates are shown in Fig. 15 for
an isolated word recognition using the set of HMMs that
have been trained on the clean TIDigits.

For the cepstral analysis and the HMMs trained on
clean TIDigits the recognition performance is low with
an error rate of about 30%. The error rate can considerably
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be reduced with the robust ETSI front-end to a rate less
than 10%. Applying the adaptation technique leads to a

further relative error rate reduction by about 70% in com-
parison to the error rate for the robust front-end.

MLLR adaptation is applied on the HMM:s for the case
of cepstral analysis, where these results are not shown in
the figure. We obtain the highest performance with an error
rate of 12% when performing the adaptation every five
utterances. An interesting result is achieved when applying
the MLLR adaptation on the HMMs trained on the fea-
tures of the ETSI front-end. We obtain an error rate of
2.3% when performing the adaptation for each utterance.
This is even slightly better than the new adaptation tech-
nique. It might indicate that it is possible to combine a
robust feature extraction with an additional adaptation.

Another experiment is run on some recordings of the
meeting recorder project (Janin et al., 2003). Speech data
have been recorded during meetings in a meeting room
where the microphones were placed in the middle of a
table. Thus these data contain reverberation besides a
low amount of background noise. The speakers uttered
also sequences of English digits which are used for this
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experiment. Only the recordings of native English
speakers are used resulting in about 2350 utterances with
about 7700 digits in total. Word error rates are shown in
Fig. 16.

In this case the performance of the robust front-end is
slightly worse in comparison to a standard cepstral analy-
sis. This effect has already been observed in most of the
experiments on reverberant data presented in the preceding
sections. Applying the adaptation scheme, the error rate
can be reduced by about 70% in relation to the cepstral
analysis without adaptation. We achieve almost the same
performance when performing MLLR adaptation for each
utterance.

6. Conclusion

We present a new technique for adapting the acoustic
parameters of HMMs to the condition of hands-free speech
input in reverberant rooms. This approach can be
combined with existing techniques for the adaptation on
noise and unknown frequency characteristics. Furthermore
we introduce a new method for adapting the Delta param-
eters based on a preceding adaptation of the static
parameters.

Applying the new adaptation approach on artificially
distorted data or on real recordings in noisy conditions,
we achieve a considerably higher recognition performance
in comparison to the case without adaptation. The error
rates are also lower than the ones that are achieved with
the robust ETSI front-end that can be considered as repre-
sentative for a robust feature extraction.

Especially in conditions where additive noise and rever-
beration distort the speech signal, we obtain a higher recog-
nition performance with the new adaptation technique in
comparison to MLLR adaptation. The linear regression
seems to compensate the nonlinear distortion effects worse
than the new approach.

In the future we will investigate whether and how robust
feature extraction schemes can be combined with HMM
adaptation techniques.
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