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Abstract

The mismatch between the acoustic conditions during training and recognition often causes a performance dete-
rioration in practical applications of speech recognition systems. Two important effects are the presence of a sta-
tionary background noise and the frequency response of the transmission channel from the speaker to the audio input
of the recognizer. The original contribution of this work are two signal processing schemes for the estimation of the
actual noise spectrum and the difference of the frequency responses between training and recognition, The estimated
noise components are taken to adapt the cepstral parameters of the recognizer’s references which are described by
hidden Markov models (HMMs). The adaptation process is based on the parallel model combination (PMC) ap-
proach (M.1.F. Gales, Model based techniques for noise robust speech recognition, Dissertation at the University of
Cambridge, 1995). For speaker independent connected or isolated word recognition considerable improvements can
be achieved in the presence of just one type of noise as well as in the presence of both types together. Furthermore this
adaptation scheme is integrated as part of a complete dialogue and recognition system which is accessible via the
public telephone network. The usability and the gain in recognition performance is. shown for this application in a real
telecommunication scenario under consideration of all real-time aspects. © 2001 Elsevier Science B.V. All rights
reserved.

Zusammenfassung

Der Grund fiir die Verschlechterung der Leistungsfahigkeit von Spracherkennungssystemen in praktischen
Anwendungen findet sich in unterschiedlichen akustischen Bedingungen wéhrend des Trainings und wihrend der
Erkennung. Zwei einflussreiche Effekte sind das Vorhandensein einer stationdren Hintergrundstorung und der
Frequenzgang des Ubertragungskanals zwischen dem Sprecher und dem Audioeingang des Erkenners. Der Original-
beitrag der hier prisentierten Arbeiten beinhaltet zwei Signalverarbeitungsverfahren zur Schitzung-des aktuellen
Storspektrums und der Differenz der Frequenzginge wihrend des Trainings und der Erkennung. Die geschitzten
Storkompenenten dienen der Adaption der cepstralen Parameter der Referenzen des Erkenners, wobei die Referenzen
durch Hidden Markov Modelle beschrieben werden. Der Adaptionsvorgang basiert auf dem Ansatz der parallelen
Modellkombination (PMC). Deutliche Verbesserungen kénnen fiir die Erkennung von einzelnen Wortern und Wort-
ketten erzielt werden in der Gegenwart eines oder beider Storeffekte zur gleichen Zeit. Desweiteren ist dieses Adap-
tionsverfahren als Teil eines kompletten Dialog-und Erkennungssystems integriert worden, das iiber das offentliche
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Telefonnetz zuginglich ist. Die Verwendbarkeit als auch der Gewinn in Bezug auf die Leistungsfahigkeit des Erkenners
werden fiir diese Anwendung in einer realen Telekommunikationsumgebung unter Beriicksichtigung aller Aspekte einer
Implementierung in Echtzeit gezeigt. © 2001 Elsevier Science B.V. All rights reserved.

Résumé

La diminution de lefficacité des systemes de reconnaissance vocale lors d’applications pratiques est due aux
différentes exigences acoustiques pendant Papprentissage et pendant la reconnaissance. Deux facteurs importants sont
la présence de perturbations sonores en arriére plan et la transmission de fréquences entre le micro et I'entrée audio du
reconnaisseur. L’étude présentée ici comporte deux modes de traitement de signaux pour estimer les perturbations
sonores actuelles et la différence lors de la transmission de fréquences pendant I'apprentissage et pendant la recon-
naissance. L’évaluation des perturbations sonores est utilisée pour une adaptation des paramétres cepstral des
références du reconnaisseur, encore appelées HMM (Hidden Markov Models). Le mode d’aptation est basé sur la
combinaison paralléle de modeles (PMC). Des améliorations importantes peuvent étre apportées pour la reconnais-
sance d’un mot ou d’une chaine de mots malgré la présence d’un ou des deux types de perturbations sonores simul-
tanément. Cette procédure d’adaptation a de plus été intégrée a un systéme de dialogue et de reconnaissance qui est
disponible sur le réseau téléphonique public. L’application et le gain d’efficacité du reconnaisseur sont démontrés pour
cette application dans un environnement de télécommunication existant et en temps réel. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Robustness is the most important factor limit-
ing the application of speech recognition in a lot of
real-life situations. Two important types of noises
are illustrated in Fig. 1 which have a major influ-
ence on the recognition performance and which
are present in almost all applications.

An example for this type of application is the
installation of a recognition system at a switch in a
telephone network where mainly two types of
noise exist. The first one is the stationary noise
which is recorded as background noise at the
caller’s location and/or which is generated on the
telephone line. This type of noise is also referred
to as “additive” noise. The second one is the fre-
quency characteristic of the whole transmission
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Fig. 1. Noise sources in the setup of a recognizer.

channel, e.g. including the microphone and the
telephone line. The term “convolutional” noise
has been introduced for this type of distortion.
Several approaches have been investigated to
compensate these effects individually or both
together (Gales and Young, 1995; Minami and
Furui, 1996; Sankar and Lee, 1996; Stern et al.,
1997).

The influence of additive and convolutional
noise can be approximately described in the linear
spectral domain by

Y(f) = [H(NIS(f) + N(f), 1)

where S(f) is the power density spectrum of the
clean speech and N(f) the spectrum of the noise.
H(f) is the frequency response of the whole
transmission system. Y(f) is considered as the in-
put to the recognizer. It is assumed that N(f) and
H(f) are almost constant or only slowly changing
over time. Given estimates of N(f) and H(f) it is
possible to adapt the spectral parameters of
HMMs. The investigations of this study are based
on cepstral features which are used in most of
today’s recognition systems. To apply the spectral
adaptation, the cepstral parameters have to be
transformed back to the linear spectral domain.
The needed transformations back and forth are
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well described in the parallel model combination
(PMC) scheme.

In this paper two processing schemes are de-
scribed to estimate the noise spectrum and the
mismatch between frequency responses as well as

their usage to adapt the cepstral parameters of a

HMM based recognizer. Recognition experiments
are done on artificially distorted data. The influ-
ence of additive stationary noise only is investi-
gated first while extending the experiments to a
combination of additive and convolutional noise
later on. Furthermore, we consider the high
mismatch situation of using different data bases
for training and testing. Finally this adaptation
approach is tested as part of a dialogue system in
the telephone network with all constraints of a
real-time implementation. The design of a recog-
nition system based on HMM adaptation, which
can be implemented in practical applications, is
the final goal of this work. This practical aspect
further differentiates this work from the more
theoretical investigations on PMC (Gales, 1995,
1997).

2. Features of the recognizer

The recognition system used throughout this
study is based on a representation of speech by
cepstral parameters and on the modeling of words
by HMMs. A feature vector consists of
¢ 12 MEL frequency cepstral coefficients (MFCCs)

including the zeroth cepstral coefficient as repre-

sentation of the short-term energy,
o the corresponding 12 delta cepstral coefficients.
The complete analysis scheme is shown in Fig, 2.

Feature vectors are calculated every 10 ms ana-
lyzing a 25 ms window. A preemphasis as well as a
weighting with a Hamming window is applied to
the samples inside each window. The spectral
analysis is based on a FFT. The power density
spectrum is calculated for 22 subbands in the MEL
frequency range. Delta coefficients are calculated
applying an often used regression formula (Young
et al., 1996) on 5 consecutive frames of MFCC
parameters.

"Whole words are modeled by HMMs with the
following features:
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Fig. 2. Processing scheme of the feature extraction.

¢ 18 states per word,

o mixture of 4 (or 2) Gaussian distributions per
state,

¢ simple left-to-right model,

e covariance matrix with only elements on the
diagonal.

The training is done with the tools of the HTK

software package (Young et al., 1996).

3. Adaptation of HMMs

The effects of additive and convolutional noise
can be formally described in the linear spectral
domain as shown in Eq. (1). For adaptation the
cepstral parameters have to be transformed back
to the spectral domain. Estimations of the noise
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spectrum as well as of the frequency response are
needed. In this approach the estimation processes
are based on signal processing techniques. Both
processing schemes and the adaptation scheme will
be presented in this section.

3.1. Estimation of the noise spectrum

A measure is derived which is related to the
signal-to-noise ratio (SNR) in subbands. This
measure is taken to detect segments which contain
only stationary background noise. The input
consists of the short-term subband energies which
are calculated by the feature extraction of the
recognizer in the MEL frequency range. The pro-
cessing scheme is illustrated in Fig. 3.

The noise spectrum is estimated as weighted
sum of the actual and past short-term MEL
spectra as long as no speech onset or the presence
of a nonstationary segment is detected. The
weighting function is an exponentially decaying
curve, hence the actual spectrum gets a stronger
weight than past spectra. It is realized as a simple
recursive update.

V) = o/ N(tior, ) + (1 — )X (8, f),

(2)
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Fig. 3. Block diagram for the estimation of the noise spectrum.

v
pause indicator flag

where 1/N(t;, 1) is the estimated magnitude noise
spectrum at time ¢ and « = 0.9 in the actual im-

plementation.

The initialization of the estimation process is
based on the assumption that the speech input to a
recognizer is usually preceded by a pause segment
where only the background noise is present. The
update of the noise spectrum in an individual
subband takes place as long as the input spectral
component +/X(#,f) is below a threshold of

Br/N(ti_1,f) with g =1.75 in the actual imple-
mentation, Exceeding the threshold corresponds to
a certain rise of the subband energy which may
exist due to a speech onset.

In parallel to the estimation of the noise spec-
trum a flag is determined indicating the presence of
speech or of a nonstationary segment. This is
based on the estimation of the measure

NX(f) = \/N(tiaf)/VX(tiaf)

that describes the noise-to-signal&noise ratio in a
subband. A relative ratio is calculated as
NX(f) — NXpin ()

Nl) = ) = Wan (1) ®

with NXpin(f) and NX.:(f) as minimum respec-
tively maximum of NX(f') in all previous frames.

NXa(f) takes values between 0 and 1 and
describes the relative noise-to-signal & noise ratio
for the current range of NX(f) values in the actual
input utterance. NX.(f) takes small values in the
presence of speech and values close to 1 in the
presence of stationary segments. The presence of
speech inside a subband is indicated when the
relative ratio takes a value below an adaptive
threshold of [0.8 — NXui, (f)]. The speech flag is set
when in at least three successive frames at least one
subband indicates the presence of speech. In case
the relative ratios in all subbands take a value
above a threshold of 0.8 this frame is marked as
pause. All mentioned constants and thresholds
have been optimized in earlier investigations
(Hirsch and Ehrlicher, 1995).

The estimated noise spectrum is copied into a
buffer as long as the flag indicates the presence of a
stationary segment. Furthermore the flag is used to
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start the recognition and to trigger the HMM
adaptation at speech onset. The whole estimation
is individually applied to each input utterance of
the recognizer.

3.2. Estimation of the frequency response

Several approaches exist for the estimation of
the frequency response and its application to rec-
ognition in additive and convolutional noise
(Gales and Young, 1995; Minami and Furui, 1996;
Sankar and Lee, 1996; Stern et al., 1997). Some of
these approaches cause a high computational load
or need some special adaptation data. The method
presented in this paper is computationally inex-
pensive, does not cause any delay and does not
need any adaptation data.

Using Eq. (1) the actual frequency response can
be estimated as

s Yonslf) = NU/)
Sione(f)

Assuming a constant frequency response H(f)
and a constant noise spectrum N(f) during a
speech utterance the long-term spectrum Yiong(f)
of this utterance can be introduced as description
of the noisy input speech. In the same way, the
short-term spectrum S(f) can be substituted by the
corresponding long-term spectrum S‘long(f ) as es-
timate for the clean speech. This leads to a better
estimation of the frequency response than using
only the information of a single short-term spec-
trum. The long-term spectrum Yion(f) is calculat-
ed by transforming back the cepstral parameters of
the noisy input speech to the spectral domain and
summing up the short-term spectra over all seg-
ments which have been classified as speech by the
recognizer. The estimated noise spectrum N(f) is
determined as described above. The long-term
spectrum Sjone(f) of the “clean” speech is esti-
mated by using the spectral information which is
contained in the HMMs. After the recognition of
an utterance the Viterbi alignment is used to define
the “best” sequence of HMM states which repre-
sents the input speech. For all states we consider
the Gaussian mixture component with the smallest
spectral distance from the input speech spectrum.

[ Haet ()] : (4)

The cepstral means of these Gaussians are trans-
formed back to spectral parameters, and then
averaged over all states to provide an estimate of
Siong(f). We take the Euclidean distance between
cepstral means as measure for the spectral dis-
tance. The whole process to determine the actual
estimate |H,«(f)| of the frequency response is
shown in the block diagram of Fig. 4.

The estimate |H,(f)| of an utterance is used to
iteratively update the former estimate |Hyq(f)|.
The new estimate is defined as

e () = sl Hota () + (1 = )| Haee OF,  (5)

where o is chosen to 0.9. The iterative updating
generates a smoothed version of the frequency
response and compensates estimation errors which
might occur for an individual utterance.

The new estimate can be applied in the HMM
adaptation scheme when recognizing the next
ufterance. The estimation of the long-term spectra
requires inverse transformations of the corre-
sponding cepstral coefficients into the linear spec-
tral domain. The estimation process can be
performed off-line, e.g. after recognizing an utter-
ance so that it does not cause any delay.
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Fig. 4. Block diagram for the frequency response estimation.
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In fact, this estimation procedure does not only
estimate the frequency response of the transmis-
sion channel. Using the spectral information con-
tained in the HMMs considers also the frequency
response which was present during recording of
the training data. Thus this processing estimates
the whole mismatch between the frequency re-
sponses of training and recognition phase. Fur-
thermore, the spectral characteristics of each
individual speaker are compensated.

3.3. Adaptation of the cepstral parameters

Having the estimates of N(f) and H(f) the
modification of the “clean” speech spectrum can
be calculated according to Eq. (1). The application
of this modification in the HMM modeling re-
quires the transformation of the cepstral parame-
ters back to the linear spectral domain. This
processing is shown in Fig. 5 for the adaptation of
the cepstral means.

The cepstral means of each mixture density
component and each HMM state are transformed
back to the linear spectral domain. The influence
of convolutional and additive noise is compen-
sated by
e multiplying the MEL power density spectrum

with the estimated frequency response and
o adding the estimated noise spectrum.

The modified spectrum is transformed again to the
cepstral domain.

For the realization in this study the actual
estimate N(f) is applied for each individual speech
input. Furthermore, the previous estimate of
|Hoew(f)| is taken. The adaptation is individually
done once for each utterance at the onset of
speech, which is detected as described in Sec-
tion 3.1.

Besides adapting all HMMs an additional
model is introduced which describes the back-
ground noise. This model consists of one state with
a single density. The cepstral parameters are cal-
culated from the preceding noisy segment.

Adapting only the cepstral means is called Log-
add approximation in (Gales, 1995). It is based on
the assumption that the stationary background
noise can be described by a mean spectrum.
Actually, the logarithm of the noise spectrum in

cepstral
I ces 12 means
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Fig. 5. The adaptation scheme.

each subband have approximately a Gaussian
distribution. A more accurate adaptation can
be achieved considering this distribution. The
Gaussian distribution corresponds to a Log-nor-
mal distribution in the linear spectral domain.
Looking at Eq. (1) adding noise has to be
described more accurately as combining the
distributions of speech and noise power spectra.
Assuming that speech and noise are independent
and additive the combination of distributions
results in adding the spectral means and their
corresponding covariance matrices (Gales, 1995).
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The variances of the cepstral parameters have
to be transformed back to the logarithmic spectral
domain to determine the covariance matrix in the
linear spectral domain. Furthermore, it is shown in
(Gales, 1995) how to approximately map the
Gaussian distribution in the logarithmic domain to
the Log-normal distribution in the linear domain.
After combining the distributions in the linear
domain the corresponding parameters in the
cepstral domain have to be recalculated. This
approach is called the Log-normal approximation
in (Gales, 1995). It has to be considered that the
transformations of the covariance matrices causes
a much higher computational load than just
transforming the cepstral means as in the Log-add
approximation.

Furthermore the delta cepstral coefficients can
be adapted. In this study a simple weighting
according to (Gales, 1997) is applied to the corre-
sponding spectral coefficients in the logarithmic
domain as described by

() SU)
A1)~ 5 L sy A0 ©

AS,(f) represents the logarithmic spectral pa-
rameters when transforming back the delta ceps-
tral coefficients, and S(f) represents the power
density spectrum of the corresponding cepstral
means. The adaptation of the delta coefficients can
be added to the Log-add approximation as well as
to the Log-normal approximation. The Log-add as
well the Log-normal approximation in combina-
tion without or with adapting the delta coefficients
are investigated in the recognition experiments.

4. Recognition experiments

This study focuses on the speaker independent
recognition of digit sequences and isolated digits.
The whole word HMMs are determined from the
training part of the TIDIGITS data base (Leon-
ard, 1984) using the tools of the HTK package.
The data base consists of the digits “1” to “9”,
“zero” and “oh”. All data were recorded at a high
SNR. The original data are downsampled to 8 kHz
for these investigations. Each digit is modeled by a

single HMM consisting of a mixture of four
Gaussian components per state,

Recognition experiments are done on the des-
ignated part of the TIDIGITS and on the Bellcore
digits. The TIDIGITS data are artificially dis-
torted by adding noise and filtering the speech
signals. The Bellcore data base contains isolated
digits recorded via telephone lines. These data
have a worse SNR than the clean TIDIGITS and
contain all effects of recordings over telephone
channels.

4.1. Recognition of the TIDIGITS

Two sets of recognition experiments are done
on the designated TIDIGITS test data.

In the first set only the estimated noise spectrum
is used for the HMM adaptation to investigate the
recognition performance in the presence of sta-
tionary background noise. No adaptation of the
frequency response is included.

The second set of recognition experiments takes
the estimate of the noise spectrum and the estimate
of the frequency response mismatch between
training and test data as input for the HMM
adaptation. The test data are filtered and station-
ary noise 1s added to show the performance in the
presence of convolutional and additive noise.

Before describing the two sets of experiments
the baseline performance of the recognizer is given
as a starting point. A word error rate of 0.77% can
be achieved corresponding to a string error rate of
2.37%. This test is done on the clean TIDIGITS
without applying any type of adaptation.

4.1.1. Adaptation to additive noise

To investigate the influence of stationary
background noise distorted versions of the TI-
DIGITS are created by artificially adding car noise
at different SNRs. The car noise was recorded in-
side a car. An almost stationary segment is taken
for the artificial distortion. The sub-segment which
is actually added to an individual utterance is
randomly extracted out of the noise recording. The
results are plotted in Fig. 6 and listed in Table 1
when applying the Log-add approximation with-
out and with adapting the delta coefficients.
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Fig. 6. Word error rates applying the Log-add approximation.

The results without adding noise are plotted at
a SNR of 30 dB. The word error rate considerably
increases when adding car noise and without
applying any adaptation. A remarkable gain can
be achieved over the whole range of SNRs when
adapting the HMMs. The adaptation of the delta
coefficients further decreases the error rates at low
SNRs. _

Similar results are achieved for the Log-normal
approximation which are listed in Table 1.

The error rates improve at low SNRs but
slightly increase at high SNRs in comparison to
the Log-add approximation. In general, the ad-
aptation of the delta coefficients as well as the

Table 1

adaptation of the variances seems to be worth-
while only at low SNRs for this special realization
of a PMC approach. It has to be considered that
the adaptation of the variances causes a high
computational load. ,

In a next step, the adaptation of HMMs based
on the PMC method is compared against the well
known technique of spectral subtraction. Spectral
subtraction is a noise reduction scheme which can
be integrated in the feature extraction of the recog-
nizer. Thus, this is also a comparison of two
principle approaches. The first approach tries to
make the feature extraction more robust against
certain distortions. In the second approach the
references are adapted with respect to the distor-
tion without modifying the existing feature ex-
traction. Some results for the noisy TIDIGITS are
plotted in Fig. 7. Again car noise is considered as
additive noise. :

The spectral subtraction is applied as prepro-
cessing of the noisy utterances before processing
them in the recognizer. The method as described in
Section 3.1 is used for the estimation of the noise
spectrum. Spectral subtraction is done with an
overestimation factor of 1 and without adding a
noise floor (Hirsch and Ehrlicher, 1995).

Fig. 7 shows a considerable improvement when
applying spectral subtraction in comparison to the
case without adaptation. But the improvement is
higher when applying the HMM adaptation as
Log-add approximation without adapting the
delta coefficients.

This result supports the following hypothesis.
The modification of the feature extraction may
reduce certain distortions but introduces artificial
distortions of the speech. For example, some
speech segments with low energy or a spectral

Word error rates when applying the Log-normal approximation

SNR/dB Without Log-add Log-add and Delta Log-normal Log-normal and Delta
adaptation approximation adaptation approximation adaptation

Clean 0.77% 0.77% 0.77% 0.97% 0.96%
20 15.4% 1.69% 1.97% 2.75% 3.13%

15 42.6% 2.7% 2.92% 3.34% 3.75%

10 70.6% 6.52% 6.05% 5.96% 6.38%

5 82.4% 19.5% 14.01% 15.07% 14.11%

0 51.87% 36.9% 38.45% 32.81%

89.25%
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Fig. 7. Word error rates comparing the Log-add approxima-
tion against spectral subtraction.

characteristic similar to the additive noise will be
attenuated or spectrally shaped in case of applying
spectral subtraction. Those new artificial distor-
tions have a negative effect on the recognition. On
the other hand the adaptation of the references
does not modify the input speech. The knowledge
about the distortion is used to map the acoustic
parameters contained in the references. Indeed,
this may have a negative effect on the recognition
too, if done incorrectly. Looking at the realization
in this study the same noise estimation is used for
spectral subtraction and for the HMM adaptation.
Thus it gets obvious that one has to expect better
results using the noise estimate to adapt the ref-
erences instead of modifying the feature extrac-
tion.

Another noisy version of the TIDIGITS is ar-
tificially created showing the ability to adapt to
changing noise situations and changing SNRs.
Besides the car noise two further noises are con-
sidered. These are the helicopter noise and the
stationary noise with a speech-like spectrum which
were used in the NOISEX92 study (Varga and
Steeneken, 1993).

Table 2
Word error rates recognizing the noisy TIDIGITS (car noise,
helicopter noise, speech-like noise)

Without Log-add
adaptation approximation
Word error rate 47.7% 5.07%

One of the three noises 1s randomly selected for
the distortion of a digit sequence. Thus on average
each noise is added to 1/3 of all TIDIGITS utter-
ances. Furthermore the SNR is randomly chosen
between 5 and 15 dB in steps of 1 dB. Thus the
overall SNR is 10 dB on average. The recognition
results are listed in Table 2 when applying the
Log-add approach without adapting the delta
coefficients.

The improvement is almost the same in com-
parison to the situation where only one type of
noise is considered at a constant SNR. This shows
that the method is applicable to situations where
the noise as well as the SNR changes for consec-
utive utterances.

As conclusion of these investigations on addi-
tive noise it turns out that the adaptation of the
static cepstral coefficients leads to a considerable
improvement of the recognition performance. The
adaptation of the variances seems to be not
worthwhile when thinking about the limited fur-
ther gain on one hand, but the high computational
costs on the other hand.

4.1.2. Adaptation to additive and convolutional
noise

In this section the estimated noise spectrum and
the estimate of the frequency response mismatch
are used to adapt the HMMs. The overall per-
formance increases when applying the adaptation
to the “clean” test data. The results are listed in
Table 3. The adaptation of the delta coefficients is
not included in all further experiments.

The main reason for the improvement can be
seen in the adaptation to the speaker’s volume and
the speaker’s long-term spectral characteristics. It
has to be mentioned that the test utterances are
consecutively processed for each speaker. This is
done according to a real application. A person
calling a speech server based on recognition will
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Table 3
Error rates when recognizing the clean data
Without Log-add approximation
adaptation and filter estimation
String error 2.37% 1.98%
rate
Word error 0.77% 0.65%
rate
Table 4
Word error rates when recognizing the filtered data
Without Log-add approximation
adaptation  and filter estimation
Word error rate 4.23% 0.71%

use the system for a while before the next speaker
is going to use it.

Now all test data are filtered with a frequency
characteristic simulating a telephone channel.
Frequencies below 300 Hz and above 3400 Hz are
attenuated by 40 dB. An amplification of about
3 dB/octave is applied in the frequency range from
300 to 1000 Hz. The filter characteristic remains
flat for frequencies between 1000 Hz and up to
about 3000 Hz. The recognition results are listed in
Table 4.

The influence of the filtering can be compen-
sated almost completely by this type of iterative
filter estimation. To get some idea about the filter
estimation process the estimated frequency re-
sponses are plotted in Fig. 8 for the first 50 con-
secutive utterances of a recognition run.

All 50 utterances belong to the same speaker.
The initial values of the estimate are 1. It can be
seen that the estimated response adapts to a cer-
tain characteristic from its initial values and re-
mains fairly stable for almost all frequency bands.

The attenuation of the low frequencies becomes
obvious in Fig. 8, when comparing the frequency
characteristic with the filter simulating the tele-
phone channel. This is also true for high frequen-
cies but it can not be seen in this view on the 3D
plot.

Finally, the performance in the presence of
additive and convolutional noise is investigated for
SNRs in the range of 0-20 dB. Results are shown
in Fig. 9.
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Fig. 8. Consecutive estimates of |H,e.(f)] for a single speaker.
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Fig. 9. Word error rates when recognizing the filtered data with
car noise added.

The results for the filtered data without additive
noise are plotted at a SNR of 30 dB. The results
without and with adaptation look very similar to
the ones presented in Fig. 6, where only noise is
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added. Looking at a single utterance and a specific
SNR it has to be mentioned that the absolute noise
level is less in comparison to the condition where
only noise is added without filtering. The energy of
the speech is already reduced by the filtering which
leads to a reduced noise level.

As result of previous experiments it turned out
that the estimation of the frequency response is not
influenced by degraded recognition results because
of additive noise for SNRs down to 10 dB. Below
10 dB small degradations were found due to the
higher number of mismatches introduced by the

worse recognition. The estimation process is de-

pendent on the correct number of matches because
the matching information is the basis for the esti-
mation. Therefore, the filter estimation is disabled
below a certain SNR to avoid this degradation.
The SNR is already determined when estimating
the noise spectrum. In case of SNRs below a pre-
defined threshold (<5 dB) the filter estimation is
disabled for the next speech utterance. This tech-
nique is used to achieve the results presented in
Fig. 9.

Summarizing, it turns out that the adaptation
scheme is able to considerably improve the rec-
ognition performance in the presence of additive
and convolutional noise.

4.2. Recognition of the Bellcore digits

Additionally to the recognition of artificially
distorted data a different set of speech data is
recognized which was recorded over telephone
lines. The same HMMs are used which are trained
on the “clean” TIDIGITS. Thus a situation is
considered with a total mismatch between training
and test data. A part of the Bellcore digits data
base is used here. It consists of 200 speakers ut-
tering the 11 digits (“1” to “9”, “zero”, “oh™) as
isolated words in real-life situations. The data
partly contain background noise introduced by the
microphone and the usual effects of different tele-
phone lines and different handsets. The recognizer
is set up to recognize isolated words only. The
word error rates are shown in Fig. 10 without and
with adaptation. The Log-add approximation is
applied as adaptation scheme. Results are shown

80 -
without adaptation isolated digit recognition
701 vocabulary: 1-9, zero, oh b
2200 test uiterances
60+ 1

(9,3
(=]
T

word error rate/%
w N
=3 1)
; T

LOG-ADD
with noise estimation

LOG-ADD

with noise and E
filter estimation

Fig. 10. Word error rates recognizing the Bellcore digits.

for compensating additive noise only, or both
additive and convelutional noise.

The word error rate is about 75% without ad-
aptation for this simple task of recognizing the 11
digits as isolated words in a speaker independent
mode. This shows impressively the problem in case
of a total mismatch between training and test data.
The error rate decreases considerably to about
20% when applying the noise estimation for the
Log-add approximation. A further reduction by a
factor 4 resulting in a word error rate of about
4.5% is achieved when applying the noise estimate
and the estimate of the mismatch filter response.
This result shows the applicability of the described
method on real-life applications.

5. Application in the telephone network

The recognition and adaptation scheme is in-
tegrated as part of a complete speech dialogue
system which is connected to the public telephone
network. A PC with a clock frequency of 266 MHz
and with Linux as operating system is taken as
hardware basis. A passive ISDN card is used to
connect the PC to the telephone network. The
recognition module is the same as the one used for
the simulation experiments with the only difference
of taking the a-law samples (ITU, 1988) from the
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ISDN line as input to the feature extraction. The
static and the delta cepstral coefficients are
adapted to the actual noise situation.

For a small field test a little demo is set up
mainly aiming at the recognition of English digits
and some command words like e.g. “ves”, “no”
and “help”. Callers are asked to utter e.g. the re-
sult of simple calculations or their phone number.
Two gender dependent HMMSs are created for
each word from a speech data base containing the
utterances of mainly German and Swedish people
speaking English. These training data were re-
corded by using a close talking microphone. They
do not include the effects and limitations of tele-
phone speech. Thus a mismatch is given between
training and incoming speech data. HMMs consist
of 18 states where each state is described by 2
Gaussian components. The speech input to the
recognizer is also stored on disk so that it can be
used as training and test data later on. About 170
callers are recorded up to now. The recognition
system shows a good performance. It is difficult to
give any numbers for the performance. First of all
there are different recognition tasks while using the
system. The major task is the recognition of digit
sequences. But at some point in the dialogue the
recognition of isolated command words only is
considered as task. Furthermore, the system was
called by some people which had fairly different
accents in comparison to the speakers used to train
the system. Another problem are non-cooperative
speakers which just tried to fool the system.

To get some objective measures about the effect
of the adaptation scheme all recorded utterances
containing only sequences of digits are taken as
test data for an off-line recognition. These are
about 1700 utterances from about 170 speakers
containing in total 6976 digits. The utterances
contain between 1 and 20 digits. The SNR of most
speech signals is higher than 10 dB. The word error
rates are shown in Table 5 without and with ap-
plying the adaptation scheme.

Table 5
Word error rates for telephone data

Without adaptation With adaptation

Word error 7.98% 3.47%
rate

These off-line experiments are done by using the
HMMs as described above which had been trained
on nontelephone data. Again considerable im-
provements can be achieved by applying the ad-
aptation technique. It has to be mentioned that
garbage models are introduced to model nonsta-
tionary noises like e.g. breathing before and after
the speech. Such garbage models help to improve
the recognition in real-life applications.

6. Conclusions

A method is presented which adapts the HMMs
to stationary background noise as well as to the
frequency response mismatch between training
and test data. Thus an approach is shown how to
cope with two degrading effects making it more
difficult to achieve a robust recognition in a lot of
real-world applications.

The processing is based on the PMC approach
where the noise spectrum as well as the frequency
response are estimated with signal processing
techniques. Both estimation schemes are the orig-
inal contribution of this paper. They work reliable
and robust. It is shown that the recognition per-
formance can be considerably improved for arti-
ficially distorted data as well as for real-life speech
data. This improvement can already be achieved
by adapting the cepstral means only. Adapting
more accurately the distributions of the cepstral
features leads to a further decrease of the error rate
especially for low SNRs. But this causes a high
computational load.

The adaptation scheme is integrated as part of a
speech dialogue system in the public telephone
network. It could prove its usability and its ability
to improve the recognition performance also in
this real-life scenario under all constraints of a
real-time implementation.
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