Supplemental Material

Evaluation of Deep Learning based 3D-Point-Cloud Processing Techniques for Semantic Segmentation of Neuromorphic Vision Sensor Event-Streams

Tobias Bolten¹, Felix Lentzen¹, Regina Pohle-Fröhlich¹ and Klaus D. Tönnies²

¹Institute of Pattern Recognition, Niederrhein University of Applied Sciences, Reinarzstr. 49, Krefeld, Germany ²Department of Simulation and Graphics, University of Magdeburg, Universitätsplatz 2, Magdeburg, Germany {tobias.bolten, felix.lentzen, regina.pohle}@hs-niederrhein.de, klaus@isg.cs.uni-magdeburg.de

This document provides additional details, example visualizations, precise network configurations and more quantitative as well as qualitative results in addition to the main paper. the DVS-OUTLAB dataset and were used in the 2D Mask-R-CNN baseline evaluation.

1 Event Counts in "DVS-OUTLAB"

Refer to Section 4.2 of main paper

The DVS-OUTLAB dataset (Bolten et al., 2021) used in the evaluation is composed of two different parts, namely, of staged scenes with focus on objects and of scenes that mainly contain environmental influences. The object scenes are plain sensor recordings with the spatial resolution of $768 px \times 512 px$. Figure 1a illustrates the event count contained in these raw recordings within 60ms temporal windows.

Section 4.2 of the main paper explains the processing pipeline used for the generation of the space-time event clouds. Here, a Patch-Of-Interest method was introduced, since the pre-mentioned event count was too high for processing if the entire spatial resolution was included. The effects of filtering and sampling in this pipeline are shown in detail in Figure 2. Details are given for the entire dataset, the staged object scenes and the environmental influences that formed the basis of the decision in implementing these steps of the processing pipeline.

2 Event-to-Frame-Encodings

Refer to Section 4.3 of main paper

Compared to the main paper, additional examples of event-to-frame encodings are given in Figure 3. Frames are randomly selected from the test set of

3 Network configurations and training

Refer to Section 4.5 and 4.6 of main paper

The exact settings, e.g. with respect to the radii selection, number of events in the set-abstraction logic, size of the MLP in the network layers are summarized in relation to the performed meta-parameter optimization in Tables 1 and 2. This should eliminate any ambiguities in terms of comprehensibility and reproducibility.

An overview of the course of the training is given in Figure 4.

4 Detailed per-class F1 scores

Refer to Section 4.6 and 4.7 of main paper

To increase readability and clarity of the evaluation given in the main paper, the label classes were grouped into the three categories background, objects and environmental influences. In addition, due to the very uneven distribution of the events per class, a weighted F1 measure was used. For completeness, the plain F1 scores for all 10 classes are listed in Tables 3 and 4 for all conducted experiments.

For further clarification, qualitative results of the segmentations are given in Figure 5. Here, the processed Patches-Of-Interest are projected into 2D frames and the resulting labeling is represented by false colors.

Please refer to the main paper:

Bolten, T., Lentzen, F., Pohle-Fröhlich, R., and Tönnies, K. D.: Evaluation of Deep Learning based 3D-Point-Cloud Processing Techniques for Semantic Segmentation of Neuromorphic Vision Sensor Event-Streams. International Conference on Computer Vision Theory and Applications (VISAPP), 2022

Figure 1: Event count comparison in DVS-OUTLAB database, complete sensor view

60ms

Figure 2: Event count comparison in DVS-OUTLAB database, per patch

Figure 3: Examples of the different frame representations used, images are randomly selected out of the test-set of DVS-OUTLAB dataset (best viewed in color and digital zoomed)

PointNet++(1024, 3L):	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
PointNet++(1024, 4L):	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
PointNet++(1024, 5L):	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
PointNet++(1024, 6L):	$ \begin{array}{c} SA(1024,0.1,[32,32,64]) \rightarrow SA(512,0.2,[64,64,128]) \rightarrow SA(256,0.3,[128,128,256]) \rightarrow SA(256,256,128]) \rightarrow SA(128,0.4,[256,256,512]) \rightarrow SA(64,0.6,[512,512,1024]) \rightarrow SA(16,0.8,[1024,1024,2048]) \rightarrow FP([256,256]) \rightarrow FP([256,256])$
	(a) Layer experiments
PointNet++(512, 3L):	$\left \begin{array}{c} SA(512,0.1,[32,32,64]) \rightarrow SA(256,0.3,[64,64,128]) \rightarrow SA(16,0.8,[128,128,256]) \rightarrow FP([256,256]) \rightarrow FP([128,128,128,128,128,10]) \\ FP([256,128]) \rightarrow FP([128,128,128,128,10]) \end{array}\right $
PointNet++(1024, 3L):	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
PointNet++(2048, 3L):	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
PointNet++(3072, 3L):	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	(b) Point-Count experiments
S_{cube}^T PointNet++(2048, 3L):	$\left \begin{array}{c} SA(2048,0.1,[32,32,64]) \rightarrow SA(256,0.3,[64,64,128]) \rightarrow SA(16,0.8,[128,128,256]) \rightarrow FP([256,256]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128,128]) \rightarrow FP([128,128,128,128]) \rightarrow FP([128,128,128]) \rightarrow FP([128,128]) \rightarrow FP([128,128,128]) \rightarrow FP([128,128]) \rightarrow FP([12$
S_{tScaled}^T PointNet++(2048, 3L):	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
S ^T _{native} PointNet++(2048, 3L):	$\left \begin{array}{c} SA(2048,9.6,[32,32,64]) \rightarrow SA(256,28.8,[64,64,128]) \rightarrow SA(16,76.8,[128,128,256]) \rightarrow FP([256,256]) \rightarrow FP([256,128]) \rightarrow FP([128,128,128,128,10]) \\ \end{array}\right $
	(c) Input-scaling experiments
Time weight 1 PointNet++(2048, 3L):	$\left \begin{array}{c} SA(2048,9.6,[32,32,64]) \rightarrow SA(256,28.8,[64,64,128]) \rightarrow SA(16,76.8,[128,128,256]) \rightarrow FP([256,256]) \rightarrow FP([128,128,128,128,12]) \rightarrow FP([128,128,128,12]) \rightarrow FP([128,128,128,128,12]) \rightarrow FP([128,128,128,128,128,12]) \rightarrow FP([128,128,128,128,128,128,12]) \rightarrow FP([128,128,128,128,128,128,12]) \rightarrow FP([128,128,128,128,128,128,128,128,12]) \rightarrow FP([128,128,128,128,128,128,128,128,128,128,$
Time weight 3.2 PointNet++(2048, 3L):	Weighted spatio-temporal distance: $d_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + 3.2 \cdot (t_i - t_j)^2}$
Time weight 20 PointNet++(2048, 3L):	Weighted spatio-temporal distance: $d_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + 20 \cdot (t_i - t_j)^2}$
	(d) Spatio/Temporal weighting experiments Table 1: PointNet++ Network configurations

$192 \times 128 \times 1$	$ \left \begin{array}{c} SA(2048, 9.6, [32, 32, 64]) \rightarrow SA(256, 28.8, [64, 64, 128]) \rightarrow SA(16, 76.8, [128, 128, 256]) \rightarrow FP([256, 256]) \rightarrow FP([256]) \rightarrow FP([256]) \rightarrow FP([256]) \rightarrow FP$
PointNet++(2048, 3L):	$FP([256, 128]) \rightarrow FP([128, 128, 128, 10])$
	(a) PointNet compare configuration
A-CNN(2048, 3L):	$MR(2048, [[0.0, 4.8], [4.8, 9.6]], [[32, 32, 64], [64, 64, 128]]) \rightarrow MR(2048, [[7, 2, 14, 4], [71, 6, 28, 91], [156, 54, 159], [158, 158, 256]]) \rightarrow MR(756, [17, 2, 14, 4], [71, 6, 28, 91], [156, 158, 158, 158, 158])$
	$MR(16, [[19.2, 38.4], [57.6, 76.8]], [[128, 128, 256], [256, 256, 512]]) \rightarrow$
	$FP([256, 256]) \rightarrow FP([256, 128]) \rightarrow FP([128, 128, 128, 128, 10])$
LSANet(2048, 3L):	$ LSA(2048, 9.6, [32, 32, 64], [32, 32]) \rightarrow LSA(256, 28.8, [64, 64, 128], [32, 32]) \rightarrow LSA(16, 76.8, [128, 128, 256], [32, 32]) \rightarrow LSA(10, 76, 8, [128, 128, 256], [32, 32]) \rightarrow LSA(10, 76, 8, [128, 128, 256], [32, 32]) \rightarrow LSA(10, 76, 8, [128, 128, 256], [32, 32]) \rightarrow LSA(10, 76, 8, [128, 128, 256], [32, 32]) \rightarrow LSA(10, 76, 8, [128, 128, 256], [32, 32]) \rightarrow LSA(10, 76, 8, [128, 128, 256], [32, 32]) \rightarrow LSA(10, 76, 8, [128, 128], [32, 32]) \rightarrow LSA(10, 76, 76)$
	$FP([256, 256]) \rightarrow FP([256, 128]) \rightarrow FP([128, 128, 128, 128, 10])$
SpiderCNN(*, 3L):	$BallQuery(9.6) \rightarrow SpiderConv(32) \rightarrow SpiderConv(64) \rightarrow SpiderConv(128) \rightarrow Top-2 \rightarrow FC([256, 256, 128, 10]) \rightarrow FC([256, 256, 10]) \rightarrow FC([256, 256, 10]) \rightarrow FC([256, 256, 128, 10]) \rightarrow FC([256, 256, 10]) $
	(b) Network successor configurations

configurations
Network-Variant
Table 2:

(b) Mask-R-CNN @ ResNet50-Backbone, evaluated every (c) Mask-R-CNN @ ResNet101-Backbone, evaluated 10th epoch

(a) 3D point cloud methods

000000000000000000000000000000000000	60	BACKGROUND	PERSON	DOG	RAIN	TREE	BICYCLE	SPORTSBALL	INSECT	BIRD	TREE_SHADOW	Mean
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.95	0.76	0.59	0.8	0.7	0.75	0.41	0.88	0.83	0.28	0.7
0.05 0.75 0.56 0.8 0.77 0.72 0.89 0.81 0.21 0.02 0.96 0.75 0.25 0.38 0.77 0.72 0.36 0.89 0.81 0.21 0.01 1 BACKGROUND PERSON DOG RAIN TREE BICYCLE SPOKTSBALL INSECT BIRD TREE.SHADOW Mean 0 0.95 0.74 0.49 0.71 0.7 0.7 0.20 0.88 0.7 <	•	0.95	0.74	0.53	0.8	0.73	0.73	0.49	0.89	0.83	0.22	0.69
		0.95	0.75	0.56	0.8	0.76	0.75	0.5	0.89	0.84	0.22	0.7
Image: indext of the state of the	5	0.96	0.75	0.52	0.8	0.77	0.72	0.36	0.89	0.81	0.31	0.69
BACKGROUND PERSON DOG RAIN TREE BICYCLE SPORTSBALL INSECT BIRD TREE_SHADOW Mem 0.95 0.74 0.49 0.71 0.7 0.75 0.41 0.88 0.83 0.03 0.04 0.95 0.76 0.59 0.8 0.75 0.41 0.88 0.83 0.23 0.04 0.73 0.74 0.73 0.73 0.73 0.73 0.74 0.74 0.75 0.06 0.89 0.83 0.73 0.73 0.74 0.74 0.74 0.75 0.06 0.75<						(a) Layer	experiments					
1 0.95 0.74 0.49 0.71 0.7 0.7 0.2 0.86 0.82 0.23 0.64 0 0.95 0.76 0.59 0.8 0.75 0.41 0.88 0.83 0.23 0.64 0.96 0.76 0.64 0.86 0.75 0.61 0.89 0.84 0.35 0.75 0.96 0.76 0.64 0.86 0.75 0.61 0.89 0.84 0.35 0.75 0.96 0.76 0.64 0.86 0.87 0.81 0.75 0.66 0.89 0.35 0.75 0.96 0.76 0.64 0.86 0.87 0.81 0.75 0.75 0.75 0.75 0.97 0.96 0.78 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.97 0.88 0.76 0.82 0.75 0.93 0.89 0.75 0.75 0.75 0.97 0.88		BACKGROUND	PERSON	DOG	RAIN	TREE	BICYCLE	SPORTSBALL	INSECT	BIRD	TREE_SHADOW	Mean
1 0.95 0.76 0.59 0.8 0.75 0.41 0.88 0.83 0.28 0.75 0 0.96 0.76 0.76 0.86 0.79 0.75 0.64 0.84 0.37 0.75 0 0.96 0.76 0.64 0.86 0.79 0.75 0.66 0.84 0.35 0.75 1 Dion-Count experiments 0.75 0.66 0.84 0.84 0.35 0.75 1 BACKGROUND PERSON DOG RAIN TREE BICYCLE SPORTSBALL INSECT BIRD TREE-SHADOW 1 BACKGROUND PERSON DOG RAIN TREE BICYCLE SPORTSBALL INSECT BIRD TREE-SHADOW 1 0.99 0.76 0.6 0.82 0.83 0.75 0.83 0.75 0.74 1 0.90 0.71 0.82 0.80 0.82 0.84 0.37 0.74 1 0.91 </td <td></td> <td>0.95</td> <td>0.74</td> <td>0.49</td> <td>0.71</td> <td>0.7</td> <td>0.7</td> <td>0.2</td> <td>0.86</td> <td>0.82</td> <td>0.23</td> <td>0.64</td>		0.95	0.74	0.49	0.71	0.7	0.7	0.2	0.86	0.82	0.23	0.64
0.0 0.0 <td>24</td> <td>0.95</td> <td>0.76</td> <td>0.59</td> <td>0.8</td> <td>0.7</td> <td>0.75</td> <td>0.41</td> <td>0.88</td> <td>0.83</td> <td>0.28</td> <td>0.7</td>	24	0.95	0.76	0.59	0.8	0.7	0.75	0.41	0.88	0.83	0.28	0.7
· · · · · · · · · · · · · · · · · · ·	8.	0.96	0.76	0.6	0.86	0.79	0.75	0.6	6.0	0.84	0.37	0.74
Image:	2	0.96	0.76	0.64	0.86	0.8	0.75	0.6	0.89	0.84	0.35	0.75
interface 0.090 0.716 0.6 0.86 0.79 0.75 0.6 0.9 0.84 0.37 0.38 0.36 0.36 0.36 0.36		BACKGROUND	PERSON	DOG	RAIN	TREE	BICYCLE	SPORTSBALL	INSECT	BIRD	TREE_SHADOW	Mean
0.97 0.83 0.78 0.80 0.82 0.65 0.92 0.88 0.53 0.83 <th< td=""><td></td><td>0.96</td><td>0.76</td><td>0.6</td><td>0.86</td><td>0.79</td><td>0.75</td><td>0.6</td><td>0.9</td><td>0.84</td><td>0.37</td><td>0.74</td></th<>		0.96	0.76	0.6	0.86	0.79	0.75	0.6	0.9	0.84	0.37	0.74
0.97 0.82 0.73 0.85 0.87 0.8 0.63 0.93 0.89 0.53 0.54 0.74 0.74 0.74 0.75		0.97	0.83	0.78	0.8	0.86	0.82	0.65	0.92	0.88	0.52	0.8
(c) Input-scaling experiments BACKGROUND PERSON DOG RAIN TREE BICYCLE SPORTSBALL INSECT BIRD TREE.SHADOW Mean sight 3.2 0.97 0.82 0.73 0.85 0.87 0.8 0.93 0.93 0.93 0.93 0.63 0.73 0.75		0.97	0.82	0.73	0.85	0.87	0.8	0.63	0.93	0.89	0.53	0.8
BACKGROUND PERSON DOG RAIN TREE BICYCLE SPORTSBALL INSECT BIRD TREE_SHADOW Mean sight 1 0.97 0.82 0.73 0.85 0.87 0.8 0.63 0.93 0.89 0.53 0.8 sight 3.2 0.97 0.82 0.86 0.86 0.81 0.63 0.93 0.99 0.79 0.79 sight 20 0.96 0.86 0.81 0.63 0.93 0.99 0.49 0.79 sight 20 0.96 0.86 0.81 0.79 0.66 0.31 0.79					(c)	Input-scal	ing experiment	×				
sight 10.970.820.730.850.870.80.630.930.890.530.8sight 3.20.970.820.690.860.860.810.630.930.90.990.490.79sight 200.960.80.810.790.60.910.860.310.790.76		BACKGROUND	PERSON	DOG	RAIN	TREE	BICYCLE	SPORTSBALL	INSECT	BIRD	TREE_SHADOW	Mean
sight 22 0.97 0.82 0.69 0.86 0.86 0.81 0.63 0.93 0.9 0.49 0.79 ight 20 0.96 0.8 0.7 0.86 0.81 0.79 0.79 0.79 0.6 0.91 0.86 0.31 0.76	/eight 1	0.97	0.82	0.73	0.85	0.87	0.8	0.63	0.93	0.89	0.53	0.8
Light 20 0.96 0.8 0.7 0.81 0.79 0.6 0.91 0.86 0.31 0.76	/eight 3.2	0.97	0.82	0.69	0.86	0.86	0.81	0.63	0.93	0.9	0.49	0.79
	/eight 20	0.96	0.8	0.7	0.86	0.81	0.79	0.6	0.91	0.86	0.31	0.76

Table 3: Detailed per-class F1-Scores in PointNet++ parameter optimization experiments

Mean	0.8	0.8	0.8	0.66		Mean	0.75	0.77	0.77	0.8		Mean	0.73	0.78	0.78	0.79		
TREE_SHADOW	0.52	0.58	0.54	0.32		TREE_SHADOW	0.58	0.6	0.62	0.65		TREE_SHADOW	0.59	0.62	0.63	0.64		
BIRD	0.88	0.89	0.89	0.76		BIRD	0.87	0.89	0.88	0.88		BIRD	0.86	0.89	0.88	0.86		
INSECT	0.92	0.93	0.92	0.83		INSECT	0.9	0.95	0.93	0.93		INSECT	0.89	0.95	0.92	0.93		V baseline
SPORTSBALL	0.65	0.58	0.57	0.41		SPORTSBALL	0.38	0.34	0.45	0.57	ackbone	SPORTSBALL	0.27	0.42	0.52	0.59	ackbone	nd 2D-Mask-R-CNN
BICYCLE	0.82	0.82	0.82	0.73	etwork variants	BICYCLE	0.85	0.87	0.85	0.86	@ ResNet50-B	BICYCLE	0.85	0.86	0.85	0.86	@ ResNet101-B	work variants a
TREE	0.86	0.87	0.87	0.8	(a) 3D Ne	TREE	0.85	0.88	0.88	0.89	k-R-CNN	TREE	0.85	0.88	0.89	0.88	-R-CNN (res for net
RAIN	0.8	0.81	0.81	0.53		RAIN	0.6	0.61	0.59	0.59	(b) Masł	RAIN	0.6	0.6	0.6	0.61	(c) Mask	ss F1-Scoi
DOG	0.78	0.77	0.82	0.51		DOG	0.73	0.78	0.7	0.82		DOG	0.59	0.76	0.7	0.7		ed per-cla
PERSON	0.83	0.83	0.83	0.74		PERSON	0.82	0.84	0.82	0.84		PERSON	0.82	0.84	0.83	0.84		able 4: Detail
BACKGROUND	0.97	0.97	0.97	0.95		BACKGROUND	0.95	0.95	0.95	0.95		BACKGROUND	0.95	0.95	0.95	0.95		Ĩ
Config	PointNet++	A-CNN	LSANet	SpiderCNN		Config	Binary	Polarity	Frequency	MTC		Config	Binary	Polarity	Frequency	MTC		

bas
\equiv
~
Z
τj
<u> </u>
~
<u> </u>
Š
a
\mathbf{Z}
-
\square
2
<u> </u>
S
aı
Ę
H
÷
н
22
í.
넙
0
≥
÷
ъ
5
Ē
ŝ
9
5
õ
Ś
<u> </u>
Γ.
ŝ
<u>a</u>
ਹ
Ľ
ē
р
q
e
Ξ
ta
ē
Д
4
O
Ы
at
H

								ndi:	
								an the second	1
					an the state The state of the s			47 <u>379</u>	
	5 A								
377 14 - 93			<u>k</u>						
	A			稅					144
> h						W.			
		11-1	制制						
		4						\$	~
				40 - 40 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 7		A start		<i>.</i>	
			2			4	1		>
				-	\$, A			
					H (1997)				
میں استین میں اسلیک استین میں میں استین میں میں					-11	Ĵ,	۵.	#	

(a) Labeled Patches-Of-Interest projected into 2D frames

BACKGROUND	PERSON DO	OG BICYCLE	SPORTSBALL	RAIN	INSECT BIRD	TREE	TREE SHADOW
------------	-----------	------------	------------	------	-------------	------	-------------

(b) False-color legend

Figure 5: False-color examples for PointNet++ semantic segmentation results

REFERENCES

- Abdulla, W. (2017). Mask R-CNN for object detection and instance segmentation on keras and tensorflow. https: //github.com/matterport/Mask_RCNN.
- Bolten, T., Pohle-Fröhlich, R., and Tönnies, K. D. (2021). DVS-OUTLAB: A neuromorphic event-based long time monitoring dataset for real-world outdoor scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 1348–1357.
- Chen, L., Li, X., Fan, D., Cheng, M., Wang, K., and Lu, S. (2019). LSANet: Feature learning on point sets by local spatial aware layer. arXiv, abs/1905.05442.
- He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
- Komarichev, A., Zhong, Z., and Hua, J. (2019). A-CNN: Annularly convolutional neural networks on point clouds. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition (CVPR), pages 7421–7430.
- Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Point-Net++: Deep hierarchical feature learning on point sets in a metric space. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS'17, pages 5105–5114, Red Hook, NY, USA. Curran Associates Inc.
- Xu, Y., Fan, T., Xu, M., Zeng, L., and Qiao, Y. (2018). SpiderCNN: Deep learning on point sets with parameterized convolutional filters. In Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, *Computer Vision – ECCV 2018*, pages 90–105, Cham. Springer International Publishing.